ImageVerifierCode 换一换
格式:DOCX , 页数:12 ,大小:87.86KB ,
资源ID:22251605      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/22251605.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(常微分方程数值解实验报告Word文档下载推荐.docx)为本站会员(b****7)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

常微分方程数值解实验报告Word文档下载推荐.docx

1、function x,m,y=naeuler2(dyfun,xspan,y0,h)%dyfun是常微分方程,xspan是x的取值围,y0是初值,h是步长。%返回值x为x取值,m为预报解,y为校正解m=zeros(length(x)-1,1);k1=feval(dyfun,x(n),y(n);y(n+1)=y(n)+h*k1;m(n)=y(n+1);k2=feval(dyfun,x(n+1),y(n+1);y(n+1)=y(n)+h*(k1+k2)/2;%四阶SK法function x,y=rk(dyfun,xspan,y0,h) k1=feval(dyfun,x(n),y(n); k2=fev

2、al(dyfun,x(n)+h/2,y(n)+(h*k1)/2); k3=feval(dyfun,x(n)+h/2,y(n)+(h*k2)/2); k4=feval(dyfun,x(n)+h,y(n)+h*k3); y(n+1)=y(n)+(h/6)*(k1+2*k2+2*k3+k4);end%主程序x=0:0.1:1;y=exp(-x)+x;dyfun=inline(-y+x+1);x1,y1=naeuler(dyfun,0,1,1,0.1);x2,m,y2=naeuler2(dyfun,0,1,1,0.1);x3,y3=rk(dyfun,0,1,1,0.1);plot(x,y,r,x1,y

3、1,+,x2,y2,*,x3,y3,oxlabel(xylabel(ylegend(y为真解,y1为欧拉解y2为改进欧拉解y3为SK解LocationNorthWest1.2实验结果:x真解y欧拉解y1预报值m校正值y2SK解y30.0 1.00000.1 1.00481.00500.2 1.01871.01001.01451.01900.3 1.04081.02901.03711.04120.4 1.07031.05611.06711.07080.5 1.10651.09051.10371.10710.6 1.14881.13141.14641.14940.7 1.19661.17831.1

4、9451.19720.8 1.24931.23051.24751.25000.9 1.30661.28741.30501.30721.0 1.36791.34871.36651.36852、选取一种理论上收敛但是不稳定的算法对问题1进行计算,并与真解作比较。(选改进的欧拉法)2.1实验思路:算法的稳定性是与步长h密切相关的。而对于问题一而言,取定步长h=0.1不论是单步法或低阶多步法都是稳定的算法。所以考虑改变h取值围,借此分析不同步长会对结果造成什么影响。故依次采用h=2.0、2.2、2.4、2.6的改进欧拉法。2.2实验代码:%主程序3:30;x1,m1,y1=naeuler2(dyfun

5、,0,20,1,2);x2,m2,y2=naeuler2(dyfun,0,22,1,2.2);x3,m3,y3=naeuler2(dyfun,0,24,1,2.4);x4,m4,y4=naeuler2(dyfun,0,26,1,2.6);subplot(2,2,1)h=2.0subplot(2,2,2)h=2.2subplot(2,2,3)h=2.4subplot(2,2,4),x4,y4,h=2.62.3实验结果:h=2.0h=2.2h=2.4h=2.61.0000 3.0000 3.4200 3.8800 4.3800 5.0000 5.8884 6.9904 8.3684 7.0000

6、8.4158 10.4418 13.4398 9.0000 11.0153 14.3979 20.4388 11.0000 13.7027 19.1008 30.8690 13.0000 16.4973 24.9092 47.4068 15.0000 19.4227 32.3536 74.8161 17.0000 22.5077 42.2194 121.5767 19.0000 25.7874 55.6687 202.7825 21.0000 29.3046 74.4217 345.3008 实验结果分析:从实验1结果可以看出,在算法满足收敛性和稳定性的前提下,Eluer法虽然计算并不复杂,凡

7、是精度不足,反观改进的Eluer法和SK法虽然计算略微复杂但是结果很精确。实验2改变了步长,导致算法理论上收敛但是不满足稳定性。结果表示步长h越大,结果越失真。对于同一个问题,步长h的选取变得尤为重要,这三种单步法的绝对稳定区间并不一样,所以并没有一种方法是万能的,我们应该根据不同的步长来选取合适的方法。实验二:Ritz-Galerkin方法与有限差分法1、用中心差分格式求解边值问题取步长h=0.1,并与真解作比较。%中心差分法function U=fdm(xspan,y0,y1,h)%xspan为x取值围,y0,y1为边界条件,h为步长N=1/h;d=zeros(1,N-1);for i=1

8、:N x(i)=xspan(1)+i*h; q(i)=1; f(i)=x(i);N-1 d(i)=q(i)*h*h+2; a=diag(d); b=zeros(N-1); c=zeros(N-1);N-2 b(i+1,i)=-1; c(i,i+1)=-1;A=a+b+c;for i=2: B(i,1)=f(i)*h*h; B(1,1)=f(1)*h*h+y0; B(N-1,1)=f(N-1)*h*h+y1; U= inv(A)*B;x=0:1;y=x+(exp(1)*exp(-x)/(exp(2)-1)-(exp(1)*exp(x)/(exp(2)-1);y1=fdm(0,1,0,0,0.1)

9、;y1=0,y1,0;,x,y1,)y真解y1中心差分法y真解y1中心差分法0.0000 0.0148 0.0287 0.0409 0.0408 0.0505 0.0504 0.0566 0.0565 0.0583 0.0582 0.0545 0.0443 0.0265 2、用Ritz-Galerkin方法求解上述问题,并与真值作比较,列表画图。2.1实验代码:%Ritz_Galerkin法function vu=Ritz_Galerkin(x0,y0,x1,y1,h)%x0,x1为x取值围,y0,y1为边界条件,h为步长syms x;N fai(i)=x*(1-x)*(x(i-1); dfa

10、i(i)=diff(x*(1-x)*(x(i-1); for j=1: fun=dfai(i)*dfai(j)+fai(i)*fai(j); A(i,j)=int(fun,x,0,1); end fun=x*fai(i)+dfai(i); f(i)=int(fun,x,0,1);c=inv(A)*f;product=c.*faisum=0; sum=sum+product(i);vu=;for y=0:1 v=subs(sum,x,y); vu=vu,v;y=0:yy=0:u=sin(yy)/sin(1)-yy;u=vpa(u,5);vu=vpa(vu,5);y1=Ritz_Galerkin(0,0,1,0,0.1);y1=double(y1);y1为RG法2.2实验结果:y1RG法3、若边值条件为y(0)=0,y(1)=1;则上述问题的数值解法怎样变化?结果如何?程序运算出来真解与数值解完全一样。其值为y=x。(具体运算不再赘述)。对于实验1、2,我们可以看出不论是有限差分法还是Ritz-Galerkin法都非常稳定,结果非常精确(误差小于0.0001)。对于实验3,编程中确定系数矩阵和常数项是最重要的。确定过程中,要注意matlab中循环是从1开始的,而我们推导的公式中循环是从0开始的。所以要区分开来谨慎对待,不然会产生极误差。

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1