ImageVerifierCode 换一换
格式:DOCX , 页数:23 ,大小:310.89KB ,
资源ID:22238613      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/22238613.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(全等三角形中的热点问题文档格式.docx)为本站会员(b****7)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

全等三角形中的热点问题文档格式.docx

1、 并任选其中一对给予证明.图中有3对全等三角形,分别:ABFDEC。 ABCDEF,BCFEFC。证明:ABDE,AD,又AB=DE, AF=DC,ABFDEC。例6(2005年宁波).如图,ABC中,AB=AC,过点A作GEBC,角平分线BD、CF相交于点H,它们的延长线分别交GE于点E、G.试在图中找出3对全等三角形,并对其中一对全等三角形给出证明.EAGDFHCBAGCAFB。AGFDFD。HBFHDC。AFCADB。证明略例7(2005年常州)如图,已知为等边三角形,、分别在边上,且也是等边三角形(1)除已知相等的边以外,请你猜想还有哪些相等线段,并证明你的猜想是正确的;(2)你所证明

2、相等的线段,可以通过怎样的变化相互得到?写出变化过程(1)AE=BF=CD ;AF=BD=CE;(2)绕E、D、F进行旋转,然后对折。例8(2005年马尾)用两个全等的等边三角形ABC和ACD拼成菱形ABCD.把一个含60角的三角尺与这个菱形叠合,使三角尺的60角的顶点与点A重合,两边分别与AB,AC重合.将三角尺绕点A按逆时针方向旋转.(1)当三角尺的两边分别与菱形的两边BC,CD相交于点E,F时,(如图131),通过观察或测量BE,CF的长度,你能得出什么结论?并证明你的结论;(2)当三角尺的两边分别与菱形的两边BC,CD的延长线相交于点E,F时(如图132),你在(1)中得到的结论还成立

3、吗?简要说明理由.(1)BE=CF. 在ABE和ACF中, BAE+EAC=CAF+EAC=60 BAE=CAF.AB=AC,B=ACF=60,ABEACF(ASA). BE=CF. (2)BE=CF仍然成立. 根据三角形全等的判定公理,同样可以证明ABE和ACF例9如图,A、B、C、D在同一直线上,ABCD,DEAF,且DEAF,求证:AFCDEB如果将BD沿着AD边的方向平行移动,如图,B点与C点重合时,如图,B点在C点右侧时,其余条件不变,结论是否仍成立,如果成立,请予证明;如果不成立,请说明理由DEAF,AD,ABCD,ABBCCDBC,即ACDB,在AFC和DEB中,ACDB,AD,

4、AFDE,AFCDEB例11如图(1),已知ABBD,EDBD,ABCD,BCDE,求证:ACCE若将CD沿CB方向平移得到图(2)(3)(4)(5)的情形,其余条件不变,结论AC1C2E还成立吗?请说明理由可证ABCCDE,得ACBE,ACBECDEECD90ACE1809090,ACCE图(2)(3)(4)(5)四种情况,结论AC1C2E仍然成立,证明同上例12已知如图(1),ABC中,BAC90,ABAC,AE是过A的一条直线,且B、C在AE的异侧,BDAE于D,CEAE于E,求证:(1)BDDECE;(2)若直线AE绕A点旋转到(2)位置时(BDCE),其余条件不变,问BD与DE、CE

5、的关系如何?请予证明(3)若直线AE绕A点旋转到图(3)位置时,(BDCE),其余条件不变,问BD与DE、CE的关系如何?请直接写出结果,不须证明(4)归纳(1)、(2)、(3),请用简捷语言表述BD、DE、CE的关系(1)BDAE,CEAE(已知),BDAAEC90(垂直定义)BADCAE90,BADABD90CAEABD(同角的余角相等)在ABD和CAE中 ABDCAE(AAS),BDAE,ADCE(全等三角形的对应边相等)AEADDE,AECEDE,BDCEDE(2)BDDECE,证明方法与(1)相同(3)BDDECE(4)归纳(1)(2)(3)可知结论表述为:当B、C在AE异侧时,BD

6、DECE;当B、C在AE同侧时,BDDECE;说明:本题考查动态几何中的量的关系,其关键是猜想规律,再运用几何知识予以证明22(本题6分)如图,在105的正方形网格中,每个小正方形的边长均为单位1将ABC向右平移4个单位,得到ABC,再把A绕点A逆时针旋转90,得到ABC请你画出A和A(不要求写画法) 22如图所示,正确画出A Ac 正确画出 (说明:若画出的A A,的位置不正确,但在的基础上画出正确的AB得3分) 三:策略开放与探索策略开放性问题,一般指解题者发不惟一或解题路径不明确的问题,这类问题要求解题者不因循守旧,不墨守成规,善于标新立异,追求一题多解,同时给解题者以广阔的思维空间,通

7、过积极思考,创新求索、探索解题策略和思路,活用解题思路和方法,优化解题方案和过程。例13(2005年十堰课改卷)如图,已知ABC,请你增加一个条件,写出一个结论,并证明你写出的结论。增加的条件为:求证:增加条件为BD=CE。结论为B=C。在RtBEC和RtCDB中 BD=CE BC=BC; RtBECRtCDB。 B=C例14(2005年扬州)如图,在ABC和DEF中,D、E、C、F在同一直线上,下面有四个条件,请你在其中选3个作为题设,余下的1个作为结论,写一个真命题,并加以证明。ABDE,ACDF,ABCDEF,BECF。答案不唯一,如 已知:;或已知:;。24(2005年漳州)如图,给出

8、五个等量关系:AD=BC、AC=BD、CE=DE、D=C、DAB=CBA。请你以其中两个为条件,另三个中的一个为结论,写出一个正确命题(只需写出一种情况),并加以证明。27(本题9分) 如图,四边形ABCD中,点E在边CD上,连结AE、BE给出下列五个关系式:ADBC;DE=CE;1=2;3=4;AD+BC=AB将其中的三个关系式作为题设,另外两个作为结论,构成一个命题(1)用序号写出一个真命题(书写形式如:如果,那么),并给出证明: (2)用序号再写出三个真命题(不要求证明);(3)加分题:真命题不止以上四个,想一想,就能够多写出几个真命题,每多写出一个真命题就给你加1分,最多加2分27解:

9、(1)如果,那么如图,延长AE交BC的延长线于F ADBC 1=F 又AED=CEF,DE=ECADEFCE AD=CF,AE=EF l=F,1=22=F AB=BF3=4 AD+BC=CF+BC=BF=AB 其它真命题的证明可参照上述过程相应给分) (2)如果,那么 如果,那么 如果,那么 (3)若(1)(2)中四个命题含假命题(“如果,那么),则不加分;若(3)中含假命题,也不加分21-(本题满分8分)如图,下面四个条件中,请你以其中两个为已知条件,第三个为结论,推出一个正确的命题(只需写出一种情况)21证明:条件AE=AD AB=AC AB=AC B=C AE=AD B=C 例15如图,

10、已知ADBC,ABDC,DEBF,试探究:BE与DF是否相等?剖析:欲证BEDF,需证ABECDF,要证这两个三角形全等已经具备了两组条件,ABCDADDECBBF即AECF只要再证AC即可那么再观察A、C还是哪两个全等三角形的对应角由条件ADCB,ABCD,很明显看出,若连结BD,那么ABD与CDB全等的条件已经具备,结论即可得证相等。理由:连结BD在ABD和CDB中ABDCDB(SSS)AC(全等三角形的对应角相等)ADCB、DEBF(已知),ADDECBBF ,即 AECF在ABE和CDF中ABECDF(SAS)BEDF(全等三角形的对应边相等)(1)在解决有关问题时,经常遇到已知条件与

11、结论无法沟通的状况,这时,便需添加辅助线,创造条件,为推出结论服务(2)利用全等三角形证明线段相等或角相等,常需添辅助线构造三角形,构造时有下面两种情况:待证的线段或角,在图形上不在两个可能全等的三角形中,需添辅助线构造三角形,使它们分别包括一个所要证的线段或角;有些条件具备的全等三角形,图形中没能直接显示出来,需添辅助线才能发现,如本题中的ABD和CDB例16已知:如图,ABAC,DBDC,(1)若E、F、G、H分别是各边中点,求证:EHFG(2)若连结AD、BC交于点P,问AD、BC有何关系?证明你的结论(1)证明:连结AD在ABD和ACD中,ABDACD,ABDACD在BEH和CFG中,

12、BEHCFGEHFG(2)AD垂直于BC,且平分BC,设AD、BC交于P由(1)得BAPCAP,易证BAPCAP,PBPC,APBAPC,又APBAPC180APB90,故ADBC且AD平分BC(1)全等三角形除可得到等角、等边,还可根据等角、等边进一步推出图形还具有的一些性质,如两线平行,两线垂直,此例中第一次全等为第三次全等提供了条件由此可以看出全等三角形这一知识所起的工具性作用(2)通过前面的学习我们可以看到,在有关全等三角形证明的问题中,常常涉及到以下两类基本图形:第一类是有关角的,如图,这三个图形的共同特征是两个三角形的一组对应角有“公共部分”第二类是关于边的,如图这三个图形的共同特

13、征是两个三角形的一组对应边有“公共部分”熟练掌握这些基本图形的特征,并能从比较复杂的图形中分离出这些基本图形,充分利用公共边或公共角的关系,能帮助我们很快找到证明思路例18某温室有一块三角形玻璃损坏后,只剩下如图的阴影部分,你对图中作哪些数据度量后,就可到建材门市部裁剪符合规格的三角玻璃,并说明其中的道理。度量ABC,DCB和线段BC,两角和夹边确定了三角形的形状和大小例19如图,已知:ABC中,AB=AC,BAC=90,分别过B,C向过A的直线作垂线,垂足为E,F。过A的直线与斜边BC不相交时,则有EF=BE+CF,如图1。(2)如图2,过A的直线与斜边BC相交时,其他条件不变,你能得到什么

14、结论?请给出证明。19(1)证BAECAF;(2)EF=BECF。例19已知零件的外径为a,要求出它的厚度x,需先求出内孔的直径AB,动手制作一个简单工具,利用三角形全等,求出AB 点拨:对于AB,是内孔的直径,无法直接测得,而作垂直也不容易,则可利用SAS的取中点的方法,这样就让人联想到剪子、钳子一类的东西,可用此方法测AB如图所示可设计如图570所示的类似钳子的工具,则CD的长就是A、B间的距离ABa2x四:情景开放与探索给出问题的实际情景,要求解题者建立数学模型,寻求切合实际的多种途径,解决实际问题,或运用数学设计各种方案提供决策依据。这类问题我们称之为情景开放性问题,它常常以实际情景或

15、现实生活为背景,涉及社会生产、科技、经济以及数学本身等各个方面,解答这类问题的本身就是创新,让同学在创造中养成应用数学意识。例20 如图,A,B两点位于一个池塘的两端,小丽想用绳子测量A、B间距离,但是绳不够长你能帮她设计测量方案吗?如不能,说明困难在哪里;如果能,写出方案,并说明其中的道理点悟:找到一根足够长的绳子就可以直接测量,如果没有足够长的绳子,我们在湖岸上构造出全等三角形,把AB“搬”到陆地测量,短绳子多量几次也就可以了解法一:能测量方案:(1)先在陆地取一点可以直接到A点和B点的点C;(2)连结AC并延长到点D,使CDCA;(3)连结BC并延长到点E,使CECB;(4)连结DE,并

16、测出它的长度 如图5105中,DE的长度就是A、B间距离在ABC和DCE中 ABCDCE(SAS) ABDE解法二:(1)在AB的垂线AF上取两点C、D,使CDAC;(2)过点D作AF的垂线DG,并在DG上取一点E,使点B,C,E在同一条直线上;(3)这时测得DE的长,就是A、B间的距离如图所示连结B、C、E, 点B、C、E在同一条直线上, 12, ABAF,DGAF, BAC90GDC在ABC和DEC中 ABCDEC(ASA)解法三:(1)派一名同学戴一顶太阳帽,在A点立正站好;(2)让该同学自己调整帽子,使视线通过“帽檐”正好落在湖对面的B点;(3)该同学转过一个角度,保持刚才的姿态,“帽

17、檐”不动,这时再望出去,仍让视线通过“帽檐”,视线所落的位置为C点;(4)连结AC,测出AC的长,就是A、B间的距离如图所示是侧面示意图根据测量知:BDACDA DABC, DABDAC90在ADB和ADC中 ADBADC(ASA) ABAC生活中的实际问题的解决办法往往不止于一种,具体选用方法时,应考虑具体情况,同样是利用三角形全等测距离,解法三较简易,但是要重复23次后求平均数,以避免较大的误差例21某铁路施工队在建设铁路的过程中,需要打通一座小山,设计时要测量隧道的长度小山前面恰好是一块空地,利用这样的有利地形,测量人员是否可以利用三角形全等的知识测量出需要开挖的隧道的长度?说明道理 A

18、、B两点直接测量有难度,因此,可利用山前面的空地,构造全等的两个三角形,使含AB的一对对应边相等,则测量出对应边的长,即得出AB的长 方法:可在空地上取一个能直接到达A点、B点的点O,连结AO延长到D,使ODOA;连接BO延长到E,使OEOB。连结DE并测出它的长度,则DE的长就是A、B间的距离如图所示:AOBDOE(SAS) ABDE(全等三角形,对应边相等) 例22(2005年河南课改卷)、如图是一条河,点A为对岸一棵大树,点B是该岸一根标杆,且AB与河岸大致垂直,现有如下器材:一个卷尺,若干根标杆,根据所学的数学知识,设计出一个测量A、B两点间距离的方案,在图上画出图形,写出测量方法。直

19、接测量A、B间的距离有困难,而若用上题中的方法,则会出现这种情况:得到的O点在河中间,很难取到;即使O点取好,而寻找的全等三角形中AB的对应边CD的两点仍然在河的两岸,与A、B的位置相同,因此此法不可取要寻求另一种使对应边在岸上的方法利用下面图示的方法就行了 在AB的垂线BE上取两点C、D,使CDBC。过点D作BE的垂线DG,并在DG上取一点F,使A、C、F在一条直线上,这时测得的DF的长就是A、B间的距离 ABBE,DGBE BBDF90ABCFDC(ASA)ABDF(全等三角形对应边相等) 注意:要注意区分这两种情况,根据具体情况或题目的语言叙述来判断方法最明显的区别是第一种没有垂直的情况

20、,利用SAS证全等;而第二种有垂直的情况,会用ASA证明三角形全等当然,若特殊情况,需具体分析 例23如图所示,河里有一条小船A,在岸边定一线段BC,再定出两条射线BA和CA,使CBACBA,BCABCA,于是量AB的长,就知道船跟岸边B点的距离AB的长,为什么?证BCABCA, 得ABAB例24(2005年淮安市金湖实验区)如图,RtABCRtADE,ABCADE=900,试以图中标有字母的点为端点,连结两条线段,如果你所连结的两条线段满足相等、垂直或平行关系中的一种,那么请你把它写出来并证明 第一种:连结CD、BE,得:CD=BE。ABCADE,AD=AB,AC=AECAB=EAD;CAD

21、=EAB;ABEADC 。CD=BE。第二种:连结DB、CE得:DBCE,ABCADE,AD=AB,ABC=ADE ,ADB=ABD,BDF=FBD 同理:FCE=FEC ,FCE=DBF ,DBCE 。第三种:连结DB、AF;得AFB D,ABCADE,AD=AB,ABC=ADE=90。又AF=AF,ADFABF ,DAF=BAF。AFBD 。第四种:连结CE、AF;得AFCE,ABC=ADE=90 。DAF=BAF ,CAF=EAF 。例25(2005年南京)如果将点P绕定点M旋转180后与点Q重合,那么称点P与点Q关于点M对称,定点M叫做对称中心。此时,M是线段PQ的中点。 如图,在直角

22、坐标系中,ABO的顶点A、B、O的坐标分别为(1,0)、(0,1)、(0,0)。点列P1、P2、P3、中的相邻两点都关于ABO的一个顶点对称: 点P1与点P2关于点A对称,点P2与点P3关于点B对称,点P3与P4关于点O对称,点P4与点P5关于点A对称,点P5与点P6关于点B对称,点P6与点P7关于点O对称,。对称中心分别是A、B,O,A,B,O,且这些对称中心依次循环。已知点P1的坐标是(1,1),试求出点P2、P7、P100的坐标。 提示:P2(1,-1) P7(1,1) P100=(1,-3)例26(2005年沈阳)如图6,在方格纸中如何通过平移或旋转这两种变换,由图形A得到图形B,再由图形B得到图形C(对于平移变换要求回答出平移的方向和平移的距离;对于旋转变换要求回答出旋转中心、旋转方向和旋转角度);如图6,如果点P、P3的坐标分别为(0,0)、(2,1),写出点P2的坐标;图7是某设计师设计图案的一部分,请你运用旋转变换的方法,在方格纸中将图形绕点O顺时针依次旋转90、180、270,依次画出旋转后所得到的图形,你会得到一个美丽的图案,但涂阴影时不要涂错了位置,否则不会出现理想的效果,你来试一试吧! 注:方格纸中的小正方形的边长为1个单位长度.

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1