ImageVerifierCode 换一换
格式:DOCX , 页数:29 ,大小:35.59KB ,
资源ID:21984918      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/21984918.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(数字信号处理实验答案文档格式.docx)为本站会员(b****6)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

数字信号处理实验答案文档格式.docx

1、(2)给定一个低通滤波器的差分方程为 输入信号 a) 分别求出系统对 和 的响应序列,并画出其波形。 b) 求出系统的单位冲响应,画出其波形。(3)给定系统的单位脉冲响应为 用线性卷积法分别求系统h1(n)和h2(n)对 的输出响应,并画出波形。(4)给定一谐振器的差分方程为 令 ,谐振器的谐振频率为0.4rad。 a) 用实验方法检查系统是否稳定。输入信号为 时,画出系统输出波形。 b) 给定输入信号为 求出系统的输出响应,并画出其波形。4思考题(1) 如果输入信号为无限长序列,系统的单位脉冲响应是有限长序列,可否用线性卷积法求系统的响应? 如何求? (2)如果信号经过低通滤波器,把信号的高

2、频分量滤掉,时域信号会有何变化,用前面 第一个实验结果进行分析说明。5实验报告要求(1)简述在时域求系统响应的方法。(2)简述通过实验判断系统稳定性的方法。分析上面第三个实验的稳定输出的波形。 (3)对各实验所得结果进行简单分析和解释。(4)简要回答思考题。(5)打印程序清单和要求的各信号波形。10.1.2 实验程序清单%实验1:系统响应及系统稳定性close all;clear all%=内容1:调用filter解差分方程,由系统对u(n)的响应判断稳定性=A=1,-0.9;B=0.05,0.05; %系统差分方程系数向量B和Ax1n=1 1 1 1 1 1 1 1 zeros(1,50);

3、 %产生信号x1(n)=R8(n)x2n=ones(1,128); %产生信号x2(n)=u(n)hn=impz(B,A,58); %求系统单位脉冲响应h(n)subplot(2,2,1);y=h(n);stem(hn); %调用函数stem绘图title(a) 系统单位脉冲响应h(n);box ony1n=filter(B,A,x1n); %求系统对x1(n)的响应y1(n)subplot(2,2,2);y1(n)stem(y1n);(b) 系统对R8(n)的响应y1(n)y2n=filter(B,A,x2n); %求系统对x2(n)的响应y2(n)subplot(2,2,4);y2(n)s

4、tem(y2n);(c) 系统对u(n)的响应y2(n)%=内容2:调用conv函数计算卷积=x1n=1 1 1 1 1 1 1 1 ;h1n=ones(1,10) zeros(1,10);h2n=1 2.5 2.5 1 zeros(1,10);y21n=conv(h1n,x1n);y22n=conv(h2n,x1n);figure(2)h1(n)stem(h1n);(d) 系统单位脉冲响应h1(n)y21(n)stem(y21n);(e) h1(n)与R8(n)的卷积y21(n)subplot(2,2,3);h2(n)stem(h2n);(f) 系统单位脉冲响应h2(n)y22(n)stem

5、(y22n);(g) h2(n)与R8(n)的卷积y22(n)%=内容3:谐振器分析=un=ones(1,256); %产生信号u(n)n=0:255;xsin=sin(0.014*n)+sin(0.4*n); %产生正弦信号A=1,-1.8237,0.9801;B=1/100.49,0,-1/100.49;y31n=filter(B,A,un); %谐振器对u(n)的响应y31(n)y32n=filter(B,A,xsin);figure(3)subplot(2,1,1);y31(n)stem(y31n);(h) 谐振器对u(n)的响应y31(n)subplot(2,1,2);y32(n)s

6、tem(y32n);(i) 谐振器对正弦信号的响应y32(n)10.1.3 实验程序运行结果及分析讨论实验内容(2)系统的单位冲响应、系统对 和 的响应序列分别如图(a)、(b)和(c)所示;实验内容(3)系统h1(n)和h2(n)对 的输出响应分别如图(e)和(g)所示;实验内容(4)系统对 和 的响应序列分别如图(h)和(i)所示。由图(h)可见,系统对 的响应逐渐衰减到零,所以系统稳定。由图(i)可见,系统对 的稳态响应近似为正弦序列 ,这一结论验证了该系统的谐振频率是0.4 rad。图10.1.110.1.4 简答思考题(1) 如果输入信号为无限长序列,系统的单位脉冲响应是有限长序列,

7、可否用线性卷积法求系统的响应。对输入信号序列分段;求单位脉冲响应h(n)与各段的卷积;将各段卷积结果相加。具体实现方法有第三章介绍的重叠相加法和重叠保留法。、 和 的阶跃变化变得缓慢上升与下降。10.2 实验二 时域采样与频域采样10.2.1 实验指导1. 实验目的时域采样理论与频域采样理论是数字信号处理中的重要理论。要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。2. 实验原理与方法 时域采样定理的要点是:a) 对模拟信号 以间隔T进行时域等间隔理想采样,形成的

8、采样信号的频谱 是原模拟信号频谱 以采样角频率 ( )为周期进行周期延拓。公式为:b) 采样频率 必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的 频谱不产生频谱混叠。 利用计算机计算上式并不方便,下面我们导出另外一个公式,以便用计算机上进行实验。 理想采样信号 和模拟信号 之间的关系为:对上式进行傅立叶变换,得到:在上式的积分号内只有当 时,才有非零值,因此:上式中,在数值上 ,再将 代入,得到:上式的右边就是序列的傅立叶变换 ,即上式说明理想采样信号的傅立叶变换可用相应的采样序列的傅立叶变换得到,只要将自变量用 代替即可。 频域采样定理的要点是:a) 对信号x(n)的频谱函数X(e

9、j)在0,2上等间隔采样N点,得到则N点IDFT 得到的序列就是原序列x(n)以N为周期进行周期延拓后的主值区序列,公式为:b) 由上式可知,频域采样点数N必须大于等于时域离散信号的长度M(即NM),才能使时域不产生混叠,则N点IDFT 得到的序列 就是原序列x(n),即 =x(n)。如果NM, 比原序列尾部多N-M个零点;如果NM,z则 =IDFT 发生了时域混叠失真,而且 的长度N也比x(n)的长度M短,因此。与x(n)不相同。 在数字信号处理的应用中,只要涉及时域或者频域采样,都必须服从这两个采样理论的要点。对比上面叙述的时域采样原理和频域采样原理,得到一个有用的结论,这两个采样理论具有

10、对偶性:“时域采样频谱周期延拓,频域采样时域信号周期延拓”。因此放在一起进行实验。3. 实验内容及步骤(1)时域采样理论的验证。给定模拟信号, 式中A=444.128, =50 , =50 rad/s,它的幅频特性曲线如图10.2.1 图10.2.1 的幅频特性曲线 现用DFT(FFT)求该模拟信号的幅频特性,以验证时域采样理论。 安照 的幅频特性曲线,选取三种采样频率,即 =1kHz,300Hz,200Hz。观测时间选 。 为使用DFT,首先用下面公式产生时域离散信号,对三种采样频率,采样序列按顺序用 , , 表示。因为采样频率不同,得到的 , , 的长度不同, 长度(点数)用公式 计算。选

11、FFT的变换点数为M=64,序列长度不够64的尾部加零。X(k)=FFTx(n) , k=0,1,2,3,-,M-1式中k代表的频率为 。要求: 编写实验程序,计算 、 和 的幅度特性,并绘图显示。观察分析频谱混叠失真。(2)频域采样理论的验证。给定信号如下:编写程序分别对频谱函数 在区间 上等间隔采样32和16点,得到 :再分别对 进行32点和16点IFFT,得到 :分别画出 、 的幅度谱,并绘图显示x(n)、 的波形,进行对比和分析,验证总结频域采样理论。提示:频域采样用以下方法容易变程序实现。 直接调用MATLAB函数fft计算 就得到 在 的32点频率域采样 抽取 的偶数点即可得到 在

12、 的16点频率域采样 ,即 。3 当然也可以按照频域采样理论,先将信号x(n)以16为周期进行周期延拓,取其主值区(16点),再对其进行16点DFT(FFT),得到的就是 在 的16点频率域采样 。 4思考题: 如果序列x(n)的长度为M,希望得到其频谱 在 上的N点等间隔采样,当NM时, 如何用一次最少点数的DFT得到该频谱采样?5. 实验报告及要求a) 运行程序打印要求显示的图形,。 b) 分析比较实验结果,简述由实验得到的主要结论c) 简要回答思考题d) 附上程序清单和有关曲线。10.2.2 实验程序清单1 时域采样理论的验证程序清单% 时域采样理论验证程序exp2a.mTp=64/10

13、00; %观察时间Tp=64微秒%产生M长采样序列x(n)% Fs=1000;T=1/Fs;Fs=1000;M=Tp*Fs;M-1;A=444.128;alph=pi*50*20.5;omega=pi*50*20.5;xnt=A*exp(-alph*n*T).*sin(omega*n*T);Xk=T*fft(xnt,M); %M点FFTxnt)yn=xa(nT)subplot(3,2,1);stem(xnt,yn); %调用自编绘图函数stem绘制序列图box on;(a) Fs=1000Hzk=0:fk=k/Tp;subplot(3,2,2);plot(fk,abs(Xk);(a) T*FT

14、xa(nT),Fs=1000Hzxlabel(f(Hz)ylabel(幅度axis(0,Fs,0,1.2*max(abs(Xk)%=% Fs=300Hz和 Fs=200Hz的程序与上面Fs=1000Hz完全相同。2 频域采样理论的验证程序清单%频域采样理论验证程序exp2b.mM=27;N=32;M;%产生M长三角波序列x(n)xa=0:floor(M/2); xb= ceil(M/2)-1:-1:0; xn=xa,xb;Xk=fft(xn,1024); %1024点FFTx(n), 用于近似序列x(n)的TFX32k=fft(xn,32) ;%32点FFTx(n)x32n=ifft(X32k

15、); %32点IFFTX32(k)得到x32(n)X16k=X32k(1:2:N); %隔点抽取X32k得到X16(K)x16n=ifft(X16k,N/2); %16点IFFTX16(k)得到x16(n)stem(n,xn,.(b) 三角波序列x(n)nx(n)axis(0,32,0,20)1023;wk=2*k/1024; %plot(wk,abs(Xk);(a)FTx(n)omega/pi|X(ejomega)|axis(0,1,0,200)N/2-1;subplot(3,2,3);stem(k,abs(X16k),(c) 16点频域采样k|X_1_6(k)|axis(0,8,0,200

16、)n1=0:subplot(3,2,4);stem(n1,x16n,(d) 16点IDFTX_1_6(k)x_1_6(n)N-1;subplot(3,2,5);stem(k,abs(X32k),(e) 32点频域采样|X_3_2(k)|axis(0,16,0,200)subplot(3,2,6);stem(n1,x32n,(f) 32点IDFTX_3_2(k)x_3_2(n)10.2.3 实验程序运行结果1 图10.2.2图10.3.3该图验证了频域采样理论和频域采样定理。对信号x(n)的频谱函数X(ej)在0,2上等间隔采样N=16时, N点IDFT 得到的序列正是原序列x(n)以16为周期

17、进行周期延拓后的主值区序列:由于NM,所以发生了时域混叠失真,因此。与x(n)相同。 10.2.4 简答思考题 先对原序列x(n)以N为周期进行周期延拓后取主值区序列,再计算N点DFT则得到N点频域采样:10.3实验三:用FFT对信号作频谱分析10.3.1 实验指导1实验目的 学习用FFT对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析 误差及其原因,以便正确应用FFT。2. 实验原理用FFT对信号作频谱分析是学习数字信号处理的重要内容。经常需要进行谱分析的信号是模拟信号和时域离散信号。对信号进行谱分析的重要问题是频谱分辨率D和分析误差。频谱分辨率直接和FFT的变换区间N有关,因为

18、FFT能够实现的频率分辨率是 ,因此要求 。可以根据此式选择FFT的变换区间N。误差主要来自于用FFT作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N较大时离散谱的包络才能逼近于连续谱,因此N要适当选择大一些。周期信号的频谱是离散谱,只有用整数倍周期的长度作FFT,得到的离散谱才能代表周期信号的频谱。如果不知道信号周期,可以尽量选择信号的观察时间长一些。对模拟信号进行谱分析时,首先要按照采样定理将其变成时域离散信号。如果是模拟周期信号,也应该选取整数倍周期的长度,经过采样后形成周期序列,按照周期序列的谱分析进行。3实验步骤及内容(1)对以下序列进行谱分析。 选择FFT的变

19、换区间N为8和16 两种情况进行频谱分析。分别打印其幅频特性曲线。 并进行对比、分析和讨论。(2)对以下周期序列进行谱分析。选择FFT的变换区间N为8和16 两种情况分别对以上序列进行频谱分析。并进行对比、分析和讨论。(3)对模拟周期信号进行谱分析选择 采样频率 ,变换区间N=16,32,64 三种情况进行谱分析。分别打印其幅频特性,并进行分析和讨论。(1)对于周期序列,如果周期不知道,如何用FFT进行谱分析?(2)如何选择FFT的变换区间?(包括非周期信号和周期信号)(3)当N=8时, 和 的幅频特性会相同吗?为什么?N=16 呢?(1)完成各个实验任务和要求。附上程序清单和有关曲线。(2)

20、简要回答思考题。 10.3.2 实验程序清单%第10章实验3程序exp3.m% 用FFT对信号作频谱分析clear all;close all%实验内容(1)=x1n=ones(1,4); %产生序列向量x1(n)=R4(n)M=8;xa=1:(M/2); xb=(M/2):1; x2n=xa,xb; %产生长度为8的三角波序列x2(n)x3n=xb,xa;X1k8=fft(x1n,8); %计算x1n的8点DFTX1k16=fft(x1n,16); %计算x1n的16点DFTX2k8=fft(x2n,8);X2k16=fft(x2n,16);X3k8=fft(x3n,8);X3k16=fft

21、(x3n,16);%以下绘制幅频特性曲线mstem(X1k8); %绘制8点DFT的幅频特性图(1a) 8点DFTx_1(n)/axis(0,2,0,1.2*max(abs(X1k8)mstem(X1k16); %绘制16点DFT的幅频特性图(1b)16点DFTx_1(n)axis(0,2,0,1.2*max(abs(X1k16)mstem(X2k8);(2a) 8点DFTx_2(n)axis(0,2,0,1.2*max(abs(X2k8)mstem(X2k16);(2b)16点DFTx_2(n)axis(0,2,0,1.2*max(abs(X2k16)mstem(X3k8);(3a) 8点D

22、FTx_3(n)axis(0,2,0,1.2*max(abs(X3k8)mstem(X3k16);(3b)16点DFTx_3(n)axis(0,2,0,1.2*max(abs(X3k16)%实验内容(2) 周期序列谱分析=N=8; %FFT的变换区间N=8x4n=cos(pi*n/4);x5n=cos(pi*n/4)+cos(pi*n/8);X4k8=fft(x4n); %计算x4n的8点DFTX5k8=fft(x5n); %计算x5n的8点DFTN=16; %FFT的变换区间N=16X4k16=fft(x4n); %计算x4n的16点DFTX5k16=fft(x5n); %计算x5n的16点DFTmstem(X4k8);(4a) 8点DFTx_4(n)axis(0,2,0,1.2*max(abs(X4k8)subplot(2,

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1