ImageVerifierCode 换一换
格式:DOCX , 页数:37 ,大小:245.91KB ,
资源ID:21941982      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/21941982.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(第七章生活中的轴对称Word文件下载.docx)为本站会员(b****7)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

第七章生活中的轴对称Word文件下载.docx

1、将一张纸对折后,用针尖在纸上扎出一个图案,将纸打开后铺平,观察所得到的图案.位于折痕两侧的部分有什么关系?与同伴进行交流.(学生操作、讨论)生我们经过操作可知:折痕两侧的图形完全重合.师很好.我们把这样的图形叫做轴对称图形(axially symmetricfigure).即:如果一个图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.这条直线即:折痕所在的直线叫做对称轴.在日常生活中,我们经常见到轴对称图形(出示图片)如:剪刀、等腰直角的三角板、相框在几何图形中,经常见的轴对称图形有:(出示投影片7.1C)你能找出它们的对称轴吗?分小组讨论.生甲图(1)是正方形,

2、它有四条对称轴.图(2)是等腰三角形,它有一条对称轴.生乙图(3)是菱形,它有两条对称轴.图(4)是等腰梯形,它有一条对称轴.生丙图(5)是等边三角形,它有三条对称轴,图(6)是圆,有无数条对称轴.师同学们讨论得很正确,看屏幕(电脑演示对称轴及折叠过程)了解了轴对称图形及其对称轴的概念后,我们来做一做(出示投影片7.1D)把准备好的一张质地较软、吸水性能好的纸或报纸拿出来,在纸的一侧上滴上一滴墨水,将纸迅速对折、压平,并用手指压出清晰的折痕,再将纸打开后铺平,观察所得到的图案.位于折痕两侧的墨迹图案彼此之间有什么关系?(学生操作、讨论,教师指导)生我们经过操作、交流得知:位于折痕两侧的墨迹图案

3、是对称的.它们可以互相重合.师很好.由此我们进一步了解了轴对称图形的特征:一个图形沿一条直线折叠后,折痕两侧的图形完全重合.接下来,大家来想一想。观察下图中的每组图案,你发现了什么?P188的图73.生甲这些图案都是轴对称图形.生乙不对,轴对称图形是指的一个图形,而图73的每组都是两个图形.只能说这两个图形对称.师乙同学说得很好,对于两个图形来说,如果沿一条直线对折后,它们能完全重合,那么称这两个图形成轴对称,这条直线就是对称轴.轴对称是说两个图形的位置关系.而轴对称图形是说一个具有特殊形状的图形.轴对称的两个图形和轴对称图形都有一条直线,都要沿这条直线折叠重合;如果把轴对称图形沿对称轴分成两

4、部分,那么这两个图形就是关于这条直线成轴对称;反过来,如果把两个成轴对称的图形看成一个整体,那么它就是一个轴对称图形.课时小结本节课我们主要探讨了轴对称现象,了解了轴对称图形及有关概念、轴对称的两个图形,并区分了轴对称图形和两个图形成轴对称.1.轴对称现象(5分钟练习)生活中几乎处处可见轴对称现象,我们居住的楼房,卧室内的双人床,穿的服装,用的桌椅、黑板,甚至排座位,设计各种物体的形状、摆放都可能考虑到它们的对称性,观察下面几个图形,它们有什么共同特点,它们具有对称性吗?以上图形沿某条直线对折后,能够完全重合吗?_.请你试一试并与同桌进行交流.总结:如果一个图形沿一条直线折叠后,直线两旁的部分

5、能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴.我们戴的眼镜,读的课本,我们的双手、双脚,面部都是对称的,这给我们以美感,想像一下,如果它们不对称了会是什么样子?你的周围环境中还有哪些轴对称图形?把你的发现与同学们进行交流,并试着找一找它们的对称轴.第二节 简单的轴对称图形第二课时课 题7.2.1 简单的轴对称图形(一)1.了解角的平分线的性质.2.了解线段垂直平分线的性质.(二)能力训练要求1.经历探索简单图形轴对称性的过程,进一步体验轴对称的特征,发展空间观念.2.探索并了解角的平分线、线段垂直平分线的有关性质.师上节课我们探讨了轴对称图形,知道现实生活中由于有轴对称图形,而

6、显得异常美丽.那什么样的图形是轴对称图形呢?生如果一个图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴.师很好,大家想一想,我们以前学过的哪些几何图形是轴对称图形呢?生甲正方形、矩形.生乙圆、菱形.生丙等腰三角形、角.师很好.今天我们就来研究简单的轴对称图形.师同学们想一想:7.2.1 A)角是轴对称图形吗?如果是,它的对称轴是什么?生甲角是轴对称图形.生乙角平分线所在的直线是它的对称轴.师是吗?你能验证吗?我们来做一做(出示投影片7.2.1 B)按下面的步骤做一做1.在一张纸上任意画一个角AOB,沿角的两边将角剪下.将这个角对折,使角的两边重

7、合.2.在折痕(即角平分线)上任意取一点C;3.过点C折OA边的垂线,得到新的折痕CD,其中,点D是折痕与OA边的交点,即垂足.4.将纸打开,新的折痕与OB边的交点为E.师老师和大家一起动手.(教师叙述步骤,师生共同操作)师通过第一步,我们可以验证什么?生齐声可以知道:角是轴对称图形,角平分线所在的直线是它的对称轴.师很好,在上述的操作过程中,你发现了哪些相等的线段?生我发现了:CD与CE是相等的.师为什么呢?生因为折痕CD与CE互相重合.师还可以怎么说呢?可不可以利用三角形全等呢?图71师生共析如图71,CD垂直OA、CE垂直OB,则ODC=OEC=90.因为:OC平分AOB,则AOC=BO

8、C.又因为OC是公共边,所以根据“两角和其中一角的对边对应相等的两个三角形全等”得:COD与COE全等,再由“全等三角形的对应边相等”得:CD=CE.师很好,在上述操作过程中,如果在折痕即角平分线上另取一点,再折一折,然后小组讨论,你会得出什么结论呢?生角的平分线上的点到这个角的两边的距离相等.师同学们总结得很好,这就是角平分线除平分角外的另一个主要性质.在这里需要注意的是:一个点在角的平分线上;角平分线上的点到角的两边的距离是相等的.好,大家再来想一想:7.2.1 C)线段是轴对称图形吗?如果是,你能找出它的一条对称轴吗?生甲线段是轴对称图形,它的对称轴是与线段垂直的且垂足是线段中点的直线.

9、生乙线段还可以沿它所在的直线对折,使得与原来的线段重合,所以说:线段所在的直线也是线段的对称轴.师很好.同学们知道了线段是轴对称图形,还找到了它的对称轴.现在大家来按照研究角的思路来探索线段的轴对称性.(出示投影片7.2.1 D)按照下面的步骤来做一做:(1)画一条线段AB,对折AB使点A、B重合,折痕与AB的交点为O.(2)在折痕上任取一点C,沿CA将纸折叠.(3)把纸展开,得到折痕CA和CB.(1)CO与AB有怎样的位置关系?(2)OA与OB相等吗?CA与CB呢?能说明你的理由吗?在折痕上另取一点,再试一试.(学生操作、思考,教师指导)生甲通过折叠,我们验证了线段是轴对称图形.生乙CO与A

10、B是垂直的.生丙OA与OB相等,因为OA与OB重合;CA与CB也是相等的,因为它们互相重合.师很好.OA与OB相等,而A、O、B是在同一直线上,所以可知:O是线段AB的中点,OC与AB是垂直的,因此可以知道:线段的一条对称轴垂直于这条直线且平分它,我们把这样的直线叫做这条线段的垂直平分线,简称中垂线(midperpendicular).点C是AB的中垂线上一点,则有CA=CB,若在线段AB的中垂线上另取一点D,是否也有DA=DB呢?大家来试一试.生我们通过操作可知:DA=DB.师那由此可以得到什么样的结论呢?同学们讨论、归纳.生从刚才操作的过程及得出的结论可以知道:线段的垂直平分线上的点到这条

11、线段两个端点的距离相等.师很好.这样我们得到了线段垂直平分线的性质:线段垂直平分线上的点到这条线段两个端点的距离相等.这个性质具有绝对性.如:有一条线段AB,如果直线MN是线段AB的垂直平分线,那么如果给出一点O,无论O点是否在直线上,还是在直线外,只要O点在MN上,我们就可以得出结论:OA=OB.你能说明理由吗?你能说明理由吗? 图72师生共析我们可以用三角形全等来说明它.如图72:直线MN是线段AB的中垂线,则可以知道:MNAB于D,AD=DB.所以可得ADC=BDC=90,因为CD是公共边,所以由“两边及其夹角对应相等的两个三角形全等”得:ADCBDC.从而由“全等三角形的对应边相等”得

12、:CA=CB.师好,下面我们通过练习来熟悉掌握角平分线的性质及线段垂直平分线的性质.课堂练习(一)课本P193随堂练习 11.如图73,在RtABC中,BD是角平分线,DEAB,垂足为E,DE与DC相等吗?为什么?图73答:DE与DC相等.理由是:射线BD是ABC的平分线,点D到角两边BA、BC的距离分别是线段DE、DC,所以:DE=DC(二)看课本P191193,然后小结.这节课通过探索简单图形轴对称性的过程,了解了角的平分线、线段垂直平分线的有关性质.同学们应灵活应用这些性质来解决问题.课后作业(一)课本P193习题7.2 1、2、3.(二)1.预习内容P1941952.预习提纲:(1)等

13、腰三角形的轴对称性.(2)等腰三角形的有关性质.(3)等边三角形的轴对称性及其性质.活动与探究如图74所示:要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短.图74过程让学生探索:在街道上找一点C,使得AC+BC为最小.通过学生活动,使他们懂得:只有A、C、B在一直线上时,才能使AC+BC最小,这时作点A关于直线“街道”的对称点A,然后连接AB,交“街道”于点C,则点C就是所求的点.结果如图75.图75作点A关于l(街道看成是一条直线)的轴对称点A,连接AB与l交于C点.奶站应建在C点处,才能使从A、B到它的距离之和最短.板书设计一、角是轴对

14、称图形.二、角的平分线的性质:角的平分线上的点到这个角的两边的距离相等.三、线段是轴对称图形线段的垂直平分线.四、线段的垂直平分线的性质:第三课时课 题7.2.2 简单的轴对称图形(二)1.等腰三角形是轴对称图形.2.等腰三角形的性质.3.等边三角形的轴对称性及性质.2.探索并掌握等腰三角形的轴对称性及其相关性质.师上节课我们探讨了简单图形线段.角的轴对称性,知道线段和角是轴对称图形.除线段和角外,我们还研究过三角形,那大家想一想:三角形是轴对称图形吗?生甲是.生乙不对,只有等腰三角形才是轴对称图形.生丙也不对,不但是等腰三角形是轴对称图形,而且等边三角形也是.生丁对,除等腰三角形、等边三角形

15、外的任意三角形不是轴对称图形.师很好.等腰三角形和等边三角形是特殊的三角形.在小学已接触过,今天我们来系统地研究一下它们的性质.师什么是等腰三角形、等边三角形呢?我们共同来回忆一下.师生共析三角形的三边,有的各不相等,有的有两边相等,有的三条边都相等.三边都不相等的三角形叫做不等边三角形(scalence triangle);有两条边相等的三角形叫做等腰三角形(isosceles triangle),三条边都相等的三角形叫做等边三角形(equilateral triangle) 也叫正三角形.(如图711)图711在等腰三角形中,相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫做顶角,腰和底

16、边的夹角叫做底角.等边三角形是特殊的等腰三角形.即底边和腰相等的等腰三角形.师有了上述的概念后,同学们来想一想.(出示投影片7.2.2 A)1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.顶角的平分线所在的直线是等腰三角形的对称轴吗?3.底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?生甲等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两条腰相等,所以把这两条腰重合对折三角形便可知道:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.师接下来大家来剪一个等腰三角形,然后进行折叠,找出它的对称轴.生乙我剪了一个等腰三角形,然后把这个

17、三角形对折,使两条腰重合,这样顶角的平分线的两旁的部分就可以重合.所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.生丙我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明:底边上的中线所在的直线是等腰三角形的对称轴.生丁我折叠等腰三角形时发现:底边上的高所在的直线也是等腰三角形的对称轴.师你们说的是同一条直线吗?大家来动手折叠、观察.生齐声它们是同一条直线.师很好.现在大家再来折一折.(出示投影片7.2.2 B)沿对称轴对折,你能发现等腰三角形的哪些特征?说说你的理由.生甲我沿等腰三角形的顶角平分线对折后,发现它两旁的部分互相重合,则说明等腰三角形的两个底角相等,顶角的

18、角平分线与底边上的中线重合.生乙我也是沿等腰三角形的顶角的平分线对折,同样发现它两旁的部分互相重合.由此可知这个等腰三角形的两个底角相等,而且还可以知道:顶角的角平分线既是底边上的中线,也是底边上的高.图712生丙也可以通过三角形全等来说明.即沿等腰三角形的顶角的平分线对折后,两旁的部分完全重合.则说明这两部分全等.如图712:ABC中,AB=AC,如果AD是BAC的平分线,则BAD=CAD.又因为AD是公共边,所以ABD与ACD全等,因此:BD=DC,B=C,BDA=CDA=BDC=90.师很好,大家看屏幕:(电脑演示等腰三角形的折叠过程,显示“三线合一”,底角相等)由此我们得到了等腰三角形

19、的性质(师生共同总结,然后出示投影片7.2.2 C)等腰三角形是轴对称图形.等腰三角形顶角的平分线,底边上的中线,底边上的高重合(也称“三线合一”),它们所在的直线都是等腰三角形的对称轴.等腰三角形的两个底角相等.师我们讨论了等腰三角形的性质,那等边三角形有哪些性质呢?大家来画一个等边三角形,然后剪下来,做一做(出示投影片7.2.2 D)(1)等边三角形是轴对称图形吗?找出它的对称轴.(2)你能发现它的哪些特征?(学生操作,教师指导)生甲我通过折叠知道:等边三角形是轴对称图形,它有三条对称轴,即:每个角的角平分线所在的直线是它的对称轴,或每条边上的高或中线所在的直线也是它的对称轴.生乙因为等边

20、三角形是三边都相等的三角形,所以它是特殊的等腰三角形.因此,它的每个角的角平分线与这个角的对边上的中线、高是重合的,它们所在的直线都是等边三角形的对称轴.这样等边三角形有三条对称轴.生丙从折叠过程中可以发现:等边三角形的三个内角都相等.由三角形的内角和性质可以得到:这三个内角都等于60师很好.我们来共同归纳一下等边三角形的性质.师生共析等边三角形是轴对称图形.等边三角形每个角的平分线和这个角的对边上的中线、高线重合(即“三线合一”),它们所在的直线都是等边三角形的对称轴.等边三角形共有三条对称轴.等边三角形的各角都相等,都等于60师很好.下面我们通过练习来进一步熟悉掌握等腰三角形的性质和等边三

21、角形的性质.(一)课本P195随堂练习1.图713是由大小不同的正三角形组成的图案,请找出它的对称轴.图713答案: 有3条对称轴.2.墙上钉了一根木条,小明想检验这根木条是否水平.他拿来一个如图714所示的测平仪,在这个测平仪中,AB=AC,BC边的中点D处挂了一个重锤.小明将BC边与木条重合,观察此时重锤是否通过A点.如果重锤过A点,那么这根木条就是水平的.你能说明其中的道理吗?图714根据等腰三角形“三线合一”的性质,等腰三角形ABC底边BC上的中线DA应垂直于底边BC(即木条).如果重锤过点A,说明直线AD垂直于水平线,那么木条就是水平的.根据是平面内过直线外一点有且只有一条直线与已知

22、直线垂直.3.如图715,在下面的等腰三角形中,A是顶角,分别求出它们的底角的度数.图715解:(1)底角的度数是:(18060)2=60(2)底角的度数是:902=45(3)底角的度数是:1202=30(二)看课本P194195然后小结.这节课我们主要探讨了等腰三角形和等边三角形的轴对称性.由此我们得到了等腰三角形和等边三角形的性质.等腰三角形的顶角平分线,底边上的中线、高线互相重合,即三线合一.它们所在的直线是等腰三角形的对称轴.等腰三角形的两底角相等.等边三角形是特殊的等腰三角形,根据其特殊性,再由等腰三角形的性质及三角形的内角和性质,可以得出等边三角形的内角均为60大家应灵活应用这些性

23、质.(一)课本P196习题7.3 1、2、3、4.(二)1.预习内容:P1971982.预习提纲轴对称的基本性质是什么?图7161.如图716,在ABC中,过C作BAC的平分线AD的垂线,垂足为D,DEAB交AC于E.求证:AE=CE过程通过分析、讨论,让学生进一步了解全等三角形的性质和判定,等腰三角形的判定,平行线的性质.图717结果证明:延长CD交AB的延长线于P,如图717.在ADP和ADC中.ADPADCP=ACD又DEAP,4=P4=ACDDE=EC.同理可证:AE=DE.AE=CE.参考例题图76例1如图76,A、B、C三点表示三个工厂,要建一个供水站,使它到这三个工厂的距离相等,

24、求作供水站的位置P.分析这是一道将实际问题理想化的数学问题,要求到点A、点B、点C距离相等的点,利用线段垂直平分线的性质及折叠线段的方法,就可以使问题解决.解通过折叠找到线段AB的中垂线l1,线段AC的中垂线l2,l1与l2相交于P点,则点P就是所求的点.(如图77)图77 图78例2如图78,三条公路AB、BC、CA围成了一个三角形区域,现要在这个三角形区域内建一客运站,且使客运站到这三条公路的距离相等,请找出客运站的位置.分析这个题也是一个实际问题,可把它转化为数学问题,利用角平分线的性质及折叠方法,就可以圆满解决此问题.图79解通过折叠可以得到B、C的平分线,两线的交点M就是所求的点.即

25、:客运站的位置.例3如图710,河南区要建一个工厂,在公路的西侧,到公路的距离与到河岸的距离相等,且到河上公路桥较近桥头的距离与到公路东侧学校的距离也相等,在图上标出工厂的位置.图710分析这题是个将实际问题理想化的数学问题,利用线段的垂直平分线的性质、角平分线的性质,以及折叠方法,就可以使问题得以解决.解分别作河流与公路交角的平分线,较近桥头与学校的中垂线,二者的交点就是工厂的位置.如上图的Q点.第七章 生活中的轴对称 一、轴对称现象及简单的轴对称图形作业导航1.轴对称图形、对称轴; 2.轴对称; 3.角平分线的性质、垂直平分线的性质、等腰三角形的性质.一、填空题 1.线段是轴对称图形,它的对称轴是_,角是轴对称图形,它的对称轴是_. 2.等腰三角形的对称轴是_,等边三角形有_条对称轴,正方形有_条对称轴,圆有_条对称轴.图13.如图1,在RtABC中,ED是AC的垂直平分线,分别交BC、AC于E、D,连结AE,如果BAEBAC=15,则C等于_. 4.等腰三角形的顶角为20,则它的底角等于_;等腰三角形的一角为20,则它的其他两角为_;等腰三角形的一角为120,则它的其他两角为_. 5.三角形三条角平分线的交点到_距离相等. 6.ABC中,C=90,AD平

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1