1、关键:1、 分别解出不等式;2、 将结果在数轴上表示出来;3、 取公共部分四位学生上黑板完成,其余学生在练习本上完成。学生思考:1、 你能为它取个名字吗?2、 你能将它们的解集在数轴上表示出来吗?3、 哪一部分是它的最后解集呢?独立思考; 小组讨论;小组交流;归纳总结。让学生进一步巩固不等式的解法。1、 与方程及解法进行对比;2、 充分利用数轴的作用来让学生理解不等式组的解集;3、 让学生充分发表自己的意见;4、 让学生通过讨论、观察自己进行归纳总结,教师主要是引导学生。教师讲评教师进行个别指导提示: 三角形三条边之间的关系。六、课堂小结:3、教师补充总结。三、练习设计1、解下列不等式组X-5
2、1/3 X 2X3 4X-31 2X-50 3X-15 3-X-1 2X-1 3X+50 3X+10 1/2 X 3-X-1 4X-31 3X-20.3X+1 X+54X+1 0.5X-15 1/2 X3 2X6 X+38 3X-241、 八名学生上黑板完成,每人一道;2、 B组学生全部完成,A组学生每行选择一道完成;3、 观察与思考:1 每个不等式组中两个不等式的解集与最后的结果之间有何联系?2 你能发现其中的规律吗?3 尝试用自己的话来进行归纳。本题一是进一步巩固学生一元一次不等式组的解法;二是通过对这些不等式组解集的观察来发现其中的规律,提高学生观察、分析以及归纳的能力。教师个别指导根据
3、学生讨论结果,教师进行板书:同大取大;同小取小;大小小大取中间;大大小小是空集。(根据具体情况具体对待)抽四名学生上黑板完成。鼓励学生大胆尝试。教师个别辅导七、课堂小结:3、教师补充总结二、讨论探究、合作交流1、 学生完成;2、 观察思考;3、 小组讨论;4、 合作交流;5、 尝试归纳。三、练习设计: X-12XX/2 +3-2 2X+53(X+2) (X+1)/2X/3 X- 1/2 1/4 X/3 + X/2-1X/2 +1(X+2)/5四、挑战自我已知不等式组 2X-a的解集为-1X1,则(a+1)(b-1)的值等于多少?五、读一读“不等式表示的平面区域”P29六、布置作业1、 预习下一
4、节内容;2、 回顾列方程组解应用题的一般步骤。1、学生小结本节内容;2、学生谈自己的学习体会或感受;1、 提高学生的观察与分析能力;2、 提高学生的语言表达能力;3、 鼓励学生用自己的话来进行总结。让学生自由选择方法,可以直接运用归纳的口诀,也可继续用画数轴的方法来得出结果。A组学生选择23道题完成,B组学生全部完成。也可作为课后思考提高学生的归纳能力和语言表达能力。 第 三 课 时1、列方程解应用题的一般步骤是什么?二、导入课题 本节课我们来学习用不等式组解决实际问题。你能说出用不等式组解应用题的一般步骤吗?三、讨论探究、合作交流 例:一群女生住若干间宿舍,每间住4人,剩19人无房住;每间住
5、6人,有一间宿舍住不满。问:可能有多少间宿舍、多少名学生?教师个别指导。审题、设未知数;找等量关系;列方程;解方程;写出答案。找不等关系;列不等式组;解不等式组;根据实际情况写出答案。思考提示:1、设有X间宿舍,则学生人数表示为 ;2、学生住X间宿舍,可以列出不等式 ;3、学生住(X-1)间宿舍,可以列出不等式 ;4、 组成不等式组: ;5、 得出结果:6、 讨论取值: 。四、练习设计:1、 用若干辆载重为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空。请问:有多少辆汽车?2、 甲以5km/h的速度进行有氧体育锻炼,2h后,乙骑自行车从
6、同地出发沿同一条路追赶甲。根检查学生的作业完成情况。让学生与列方程解应用题的一般步骤进行类比。用学生自己的语言进行总结,只要合理就行。此题学生完成起来有一定难度,所以可适当给出学生一些提示,以降低学习难度。引导学生对结果进行讨论。让学生仿照上面的解法来完成。3、教师进行补充总结。据他们两人的的约定,乙最快不早于1h追上甲,最慢不晚于1h15min追上甲。乙骑车的速度应当控制在什么范围?五、作业布置1、 学生小结本节课内容;2、 学生谈自己的学习体会;教 学反 思本节学随感录5.3 相似三角形教学目的:1.使学生理解相似三角形的定义,掌握定义中的两个条件,理解相似比的意义2.使学生理解并掌握定理
7、“平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似)3.通过相似三角形概念的引入过程,培养学生联系实际的意识,增进数学应用的眼光教学重点:.使学生理解并掌握定理“平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似)教学难点:准确找出相似三角形的对应边和对应角度。教学方法:学情分析:教学过程:一、讨论相似三角形的定义请同学们都拿出文具盒中的三角板,观察它们之间的关系,再与教师手中的木制三角板比较,观察这些三角形的关系,这是有全等的关系也有相似的关系从全等与相似的类比,不难得到相似三角形的定义二、 给出定义1. 从A=A,B=B
8、,C=C,AB:AB=BC:BC=AC:AC 可知 ABCABC2.板书定义叫学生写在笔记本上3.什么叫相似比,说明相似比的意义.注意:(在记两个三角形相似的时候,和记三角形全等一样,通常把表示对应顶点的字母写在对应的位置上,这样可以比较容易找出相似的对应的角和边)ABC和ABC的比与ABC和ABC的比不一定相等,而是成倒数的关系.三、 导出定理1.讨论为什么“平行于三角形一边的直线和其它两边的相交,所构成的三角形与原三角形相似?” 如图:如果DEBC,ADE =B AED=C;AD:AB=DE D E:BC=AE:AC B C2、平行于三角形的一边,且和其他两边相交的直线,所截得的三角形与原
9、三角形的三边对应成比例(成比例的线段不都在一个角的两边上,而分别是截得的三角形与原三角形的三条边)四、 学生练习1、讨论224页练习1(1)所有的等腰三角形相似吗?等边三角形呢?为什么?(2)所有的直角三角形相似吗?等腰直角三角形呢?演示课件2、课堂练习224页2(目的,找对应边对应角)3、练习:找出哪些对三角形是相似的找出对应角、对应边,列出比例式五、课堂小结:1、 相似三角形的定义;2、 会准确找出两三角形的对应边和对应角;六、课外作业: P235 N1(1)、(2),N 2。板书设计:教学后记:三角形相似的判定(一)1、 使学生能通过三角形全等的判定来发现三角形相似的判定。2、 使学生掌
10、握相似三角形判定定理1,并了解它的证明。3、 使学生初步掌握相似三角形的判定定理1的应用。重点:掌握相似三角形判定定理1及其应用。难点定理1的证明方法。教学过程一 复习1、 什么叫相似三角形?相似三角形与全等三角形有何联系?2、 到目前为止判定三角形相似的方法有几个?3、 判定两个三角形全等的定理有几个?说出它们的内容。二、新授1、 导入新课两个角对应相等的两个三角形相似吗?这就是我们今天研究的问题。板书2、 要证明以上命题是真命题,目前只有两条途径,一个是相似三角形的定义,显然条件不够。二是用三角形相似判定的预备定理,但它不具备预备定理的基本图形,为了使用它,就得创造呢?(把小的三角形移到大
11、的三角形中)老师肯定他们的思路后然后师生一起用不着几何作图的办法完成。证明(略)判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。可简单说成:两角对应相等,两三角形相似。这个定理的出现为判定两三角形相似增加了一条新的途径。3、 范例:例1:已知:ABC和DEF中A=40,B=80,E=80,F=60求证:ABCDEF分析:由于条件中有角的关系,所以我们可以联想到“对应角相等”的问题,从已知可以证明C=F,这样就有了两个角对应相等,三角形相似的条件,所以ABCDEF证明:(略)例2:直角三角形被斜边上的高分成的两个直三角形的与原三角形相似(像这样只用文字说明
12、的题目,必须画出相应 的图形写出已知,求证。然后才能着手证明)欲证明两个三角形相似,只需证明两个对应角相等。见教材三、巩固练习:1、 P226 N1、2、3;2、 错例辨析:ABC的B=C,ABC的B=CABCABC四、小结本节主要学习了相似三角形的判定定理1一定要掌握好这个定理。五、作业: P235 N3、4。教学后记三角形相似的判定(二)教学目的:1、 使学生掌握三角形相似的判定定理2,3,和它们的应用。2、 了解上述两定理的证明。判定定理的应用定理的证明一、 复习: 1、判定三角形相似目前有哪些方法?2、回忆三角形相似判定定理1的证明的方法。二、 新授三角形全等的判定中AAS 和ASA对
13、应于相似三角形的判定的判定定理1,那么SAS和SSS对应的三角形相似的判定命题是否正确,这就是本节研究的内容。(板书)2、 三角形相似的判定定理3。判定定理2 如果一个三角形的两条边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似可以简单说成:两边对应成比例且夹角相等的两三角形相似。判定定理3如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。三边对应成比例的两三角形相似。我们对判定定理1 的证明大家已经清楚,就是在一个三角形的内一辅助三角形,使与另一个三角形全等,这两个三角形与所在三角形相似,今天也可以采用这种思路来证明它们吗?请看书P227-22
14、8说明:这三个判定定理证明中,实际上都存在关于相似三角形图形的传递性问题,要与等量代换相区别。3、 范例依据下列各组条件,判定ABCABC是不是相似,并说明为什么?(1)A=120度,AB=7CM,AC=14CM,A=120度AB=3CM,AC=6CM,(2)AB=4,BC=6,AC=8,AB=12,BC=18,AC=24 解(1) 因为AB:AB=7:3,AC:AC = 14:6 = 7:所以AB:AB=AC:A=A所以ABCABC(两边对边成比例,且夹角相等两三角形相似)三:巩固练习1、课本P232 1,2,3本节学习了相似三角形两个判定定理,一定用时要注意它们使用的条件。P225 N5、
15、6。三角形相似的判定(三)1、 使学生掌握直角三角形相似的判定定理及其应用。2、 使学生进一步了解定理证明的方法。定理的应用难点:教学过程 :一:复习1、 勾股定理。2、 直角三角形的全等判定定理是一条直角边和一条斜边对应相等的两个直角三角形全等。那么两个直角三角形相似的对应命题应是什么呢?2、 直角三角形相似的判定定理。如果一个直角三角形的斜边和一条直角和另一个直角三角形的斜边和一条直角边对应成比例,那么这两个三角形相似。如何证明这个定理,上述的三个相似三角形的判事实上定理的证法,同样运用这个定理的证明。 B B C A C A C A 已知:如图RTABC与RTABC中C=C=90度,AB
16、:AB=AC:AC求证: RTABCRTABC书上定理的证明思路请看书解题过程请看书,完成这题后,老师告诉学生:若把题目的最后一句ABCCOB吗?改成这两个三角形相似吗?那结果又是什么?原题目中ABCCOB,那么对应顶点已对齐,所以斜边对斜边,直角边BC对直角边DB,若改为这两个三角形相似,因为题目中ABC=COB=90度已定,所以斜边对斜边不变而直角边BC可能与BD 对应,也可能与AB对应,因此本题就有两种情况存在,其结果也就可能有两个。 P232 N1、2四、小结:本节的直角三角形相似的判定和应用必须掌握。 P236 N8、9。课题 : 课时安排:课题名称相似多边形的性质(一)NO:课 型
17、新 授德育点经历探索相似多边形的过程,并在探究过程中发展学生积极的情感、态度、价值观,体验解决问题策略的多样性。创新点理解并掌握相似三角形对应高的比、对应角平分线的比、以及对应中线的比都等于相似比。能力点培养学生的分析能力和数形结合的能力知识点理解并初步掌握相似多边形周长的比等于相似比、面积的比的等于相似比的平方,并能用来解决简单的问题。学情分析 本节课共分2课时,第1课时主要探索相似三角形中对应高的比、对应中线的比与相似比的关系;第2课时探索相似多边形的周长笔、面积比与相似比的关系。 教学流程(内容概要)师生互动(问题设计、情景创设)一、引入A B 若正方形ABCD边长为1周长为4,面积为1
18、 若边长增大一倍,变为2.周长为8,面积为4 若边长,变为3.周长为12,面积为9C D 若边长,变为N.周长为4N,面积为NN钳工小王准备按照比例尺3:4的图纸制作三角形零件,该零件的横截面为ABC画在图纸上是DEF, CH,FG分别是它们的高.C F A H B E G D相似多边形的性质(二)新授发展学生积极的情感,态度,价值观.体验解决问题策略的多样性.培养学生的分析能力和数形结合的能力.掌握相似多边形周长,面积的比.由相似比得出周长和面积的比需要一定的推理过程,但本书没有介绍等比定理,因此要引导学生引入比值K,要给学生的思考和交流留有充分的时间和空间.教学流程(内容概要)(问题设计,
19、情景创设)引入体会面积与边长的关系.具体讨论三角形A B 若正方形ABCD边长为1周长为4,面积为1 C F(1)找出图中的相似三角形,并简述理由.ABCDEF,AHcGFEHCBDGFABCDEF,议一议CH与FG的比是多少? 3:4ABC与DEF,的周长比和面积比分别是多少?你是怎么想的?与同伴交流.(AB+AC+BC)/(EF+ED+FD)=4:所以周长之比是4:面积:0.5AB*HC/0.5EDGF=16/9所以面积之比是16/9(1) 四边形A1B1C1D1和A2B2C2D2相似.连接对角线A1C1和A2C2所得的A1B1C1与A2B2C2相似吗?(2) A1C1D1与A2C2D2呢
20、?如果相似, 它们相似比是否相等?为什么? 相等,(3) 四边形A1B1C1D1和A2B2C2D2的周长比,面积比与相似比有什么关系? C1 C2 D1 A2 B2 A1 B1相似多边形的周长等于相似比,面积比等于相似比的平方.练习:P79 习题2.10放缩比例是1:4.面积变为原来的16倍做一做周长和面积比的应用随堂练习小结作业 左图是某城市地图的一部分,比例尺 1:6000 (1)设法求出图上环形快速路的总长度,并由此求出环形快速路的实际长度.(2)估计环形快速路所围成的区域的面积,你怎么想的?(3)有人认为,两个相似三角对应角平分线的比等于周长的比,你认为对吗?若比例尺是1:10000.
21、图上图形与实际图形相似吗?求相似比?周长比,面积比.(1)本节课你最成功的是什么?(2)你认为你下节课应该注意什么?(3)今天回家应对本节哪个知识点进行练习?P79习题2.10 3.4课后记:课 题1 线段的比课时授课时间2004年 月 日知识目标1、结合现实情境了解线段的比和成比例线段。2、理解并掌握比例的性质及其简单应用。能力通过现实情境,进一步发展学生从数学的角度提出问题、分析问题和解决问题的能力,培养学生的数学应用意识,体会教学与自然、社会的密切联系德育培养学生学习数学的兴趣及理论联系实际的能力重点线段比的概念及其求解策略方法自学与点拨相结合教具媒体多媒体教材分析学情本节通过具体问题的
22、情境,使学生认识线段的比和成比例线段等概念,并利用引入比值k的方法研究比例的主要性质,为后续学习奠定基础课后记环节时控教师活动教学内容学生活动1、 新课引入创设一个恰当的问题情境,促进学生自觉地认识现实中的比例模型,在解决问题的氛围中了解线段的比引入比值k 的方法是 解决比例问题的一种重要方法,事实上,利用这种方法,可以很方便地推导出比例的性质通过本例与学生一起探讨线段比的应用:在已知比例尺(线段比的情况下,知道图上长度可求实际长度;求法类似解分式方程。利用powerpoint打出图片,并结合图片给出问题:(1)如果把大树和小颖的高分别看成如图4 -1所示的两条虚线段AB,CD,那么这两条线段
23、的长度比是多少?(2)已知小颖的身高是1.6m,大树的实际高度是多少?两条线段长度的比与所采用的长度单有没有关系?通过思考、交流,引导学生得出:线段的长度比与所采用的长度单位无关如果选用一个长度单位量得两条线段AB,CD的长度分别是m、n,那么就说这两条线段的比AB:CD=m:n,或写成=.其中,线段AB:CD分别叫做这个线段比的前项和后项.如果把表示成比值k,那么=k,或AB=kCD此处对线段比的前项、后项概念作进一步解析。例1在某市城区地图(比例尺1:9000)上,新安大街的图上长度与光华大街的图上长度分别是16cm,10cm.(1)新安大街与光华大街的实际长度各是多少米?(2)新安大街与光华大街的图上长度之比是多少?它们的实际长度之比呢?解:(1)根据题意,得学生结
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1