ImageVerifierCode 换一换
格式:DOCX , 页数:16 ,大小:76.13KB ,
资源ID:21638708      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/21638708.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(数字信号处理实验报告Word格式.docx)为本站会员(b****6)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

数字信号处理实验报告Word格式.docx

1、 利用FFT对模拟信号进行谱分析室,应将模拟信号离散化以得到离散时间信号,同时得考虑谱分析中参数的选择。 为避免混叠失真,要求抽样频率fs2f0(f0连续信号的最高频率),频率分辨率F离散频率的间隔,记录长度的取样数N(Tp=NT),这三者之间需N2f0/F。谱分析的步骤:首先,利用上面所选参数,在记录长度Tp中对连续时间信号xa(n)进行N点取样,得到离散时间信号x(n)。然后,利用FFT计算信号的频谱:X(K)=FFTx(n)。MATLAB中可以用abs(x)来计算模值。由于有限长序列补零以后,只是频谱的取样点有所增加,所以不会影响原频谱的分布。实 验 内 容1.对于两个序列:x(n)=n

2、R16(n),h(n)=R8(n)(1)在同一图形窗口中绘出两序列的时域图形。(2)利用FFT编程计算两序列的线性卷积,绘出的时域图形。程序代码:N=16,x1=0:N-1;subplot(311),stem(0:N-1,x1);title (x(n)=n*R16(n);axis(0 N 0 N);grid;%x(n)的时域图形M=8,x2=ones(1,M);subplot(312),stem(0:M-1,x2);title(h(n)=R8(n)axis(0 M 0 2);%h(n)的时域图形x3=0:N-1 zeros(1,M-1);x4=ones(1,M) zeros(1,N-1);%将

3、x(n)、h(n)的长度通过补零增加为N+M-1X1=fft(x3);X2=fft(x4);%分别求x(n)、h(n)的FFTX=X1.*X2;y=ifft(X);%求二者FFT的乘积的反变换subplot(313);stem(0:N+M-2,y);卷积结果%显示y(n)的时域图形,从0开始,总长度为N+M-1 对于连续信号xa(t)=cos(2f1t) +5cos(2f2t) +cos(2f3t) ,其中f1=6.5kHz, f2=7kHz, f3=9kHz, 以采样频率fs=32 kHz对其进行采样,(1)对xa(t) 信号采集16点样本,分别作16点和补零到256点的FFT,并分别绘出对

4、应的幅频特性曲线。(2)对xa(t)信号采集256点样本,分别作256点和512点的FFT,并分别绘出对应的幅频特性曲线。 (3)比较(1)和(2)中的结果,分析采样点数和傅里叶变换点数对FFT的影响,说明高密度频谱和高分辨率频谱的特点与区别。%采样为16的FFTN=16;L=256;fs=32000; f1=6500;f2=7000;f3=9000;T=1/fs;ws=2*pi*fs;n=0:%信号样本数x=cos(2*pi*f1*n*T)+5*cos(2*pi*f2*n*T)+cos(2*pi*f3*n*T );X=fft(x,N);%16点FFTw=(0:N-1)*ws/N)/(2*pi

5、);%横坐标范围subplot(2,2,1);stem(w,abs(X);ylabel(幅频特性谱线xlabel(采样点为16的16点FFT 频率(Hz) n2=0:L-1;x2=x(1:N) zeros(1,L-N);%信号补零,使其长度为256X=fft(x,L);%补零后的256点FFTL-1)*ws/L)/(2*pi);subplot(2,2,3);采样点为16补零到256后的256点FFT %采样为256的FFTN=256;L=512; %256点FFTsubplot(2,2,2);采样点数为256的256点的FFT subplot(2,2,4);%512点FFT采样点为256补零到

6、512的512点的FFT 实 验 结 果 及 分 析利用FFT进行频谱观测分利用FFT计算线性卷积分析:FFT在进行计算时可以将时域信号进行基二分,一直分到N/2个2点的DFT运算,这样可以节省很多时间。并且能够真实的反映线性卷积结果。2.利用FFT进行频谱观测分析 因为最小的频率差值为7KHz6.5KHz=0.5KHz,采样频率为32K,所以最小的样本数目应当是32/0.5=64个,当采样点不足时,必然发生混叠失真,即不能观测出原信号的频率分布。 当取样点N=1664时,左上角的信号的16点FFT变换所得频谱图上几乎反应出信号的任何频率信息,因为幅值的大小并不能代表对应的频率即为信号的频率分

7、布。 当采样点N=1664时,可以从右上角的256点FFT变换频谱图中清楚的看出吸纳后的频率成分(6.5KHz,7KHz,9KHz),此时的频谱图就是高分辨率频谱图。 当取样点足够时,只是改变FFT变换的点数,在原有高分辨率频谱图上增加一些叠加的频率成分,并且在信号频率的点上又叠加了一些新的幅值,所以,信号的的频率成分又在原有的高分辨率频谱的基础上变成了高密度的频谱图。 所以,高分辨率的的频谱图才是进行频谱分析所需要的结果,因此,在时域采集样点是应当要足够多,才能获得正确的频谱信息。至于说FFT的点数,应当是大于且最接近信号取样点数的2的幂次,FFT的点数越多频率分布的情况反而不清楚,因为点数

8、增多,FFT的计算就是在原有信号的基础上自动补零,此时又变回了高密度频谱,并且也牺牲了时间,所以,只用取接近抽样点的2的N次幂的FFT点数即可。 因此,在取样点数足够的情况下,只需求大于且最接近信号取样点数的2的幂次的FFT即可清楚的看出信号的频率分布。设计性实验二:IIR数字滤波器的设计1、本实验为设计性实验。2、掌握用双线性变换法设计IIR数字滤波器的基本原理和设计方法。3、掌握用双线性变换法设计IIR数字Butterworth滤波器的原理和设计方法。实验原理IIR数字滤波器的设计借助模拟滤波器原型 ,再将模拟滤波器转换成数字滤波器 。由双线性变换的S 域与 Z域间的关系可知: z 和s

9、之间可以直接代换,由于 S 平面与 Z 平面一一单值对应, S 平面的虚轴(整个 j)经映射后确已成为 z 平面上的单位圆,但 与为非线性关系,因此,通过双线性变换后两个滤波器的频率特性形状不能保持相同,双线性变换不存在混迭效应。因为 s 平面的左半平面被映射在单位圆内部 ,这意味着稳定的模拟滤波器经双线性变换可以映射成稳定的数字滤波器。设计滤波器的步骤:1.得到数字指标(Wn等) 2.双线性变换为模拟低通指标 3.归一化模拟拟指标 4.利用通带衰减与阻带衰减的值求Butterworth的阶数N及归一化的模拟系统函数 5.将这个再经过去归一化得到想要的滤波器类型 6.用双线性变换法变为数字滤波

10、器 用双线性变换法设计一个IIR数字Butterworth低通滤波器。技术指标为:通带截止频率fp=1kHz ,阻带截止频率fs=1.5kHz ,通带衰减Rp1dB,阻带衰减Rs 40dB ,采样频率Fs=10kHz。绘出滤波器的幅频特性曲线和相频特性曲线,判断设计是否符合要求。fp=1000;fs=1500;Rp=1;Rs=40;Fs=10000;%数字滤波器的技术指标wp=2*pi*fp/Fs;ws=2*pi*fs/Fs;%归一化频率T=1;Fs=1/T;Wp=(2/T)*tan(wp/2);Ws=(2/T)*tan(ws/2);%转换成模拟域指标N,Wn=buttord(Wp,Ws,Rp

11、,Rs,s%滤波器阶数选择和截止频率的求取Z,P,K=buttap(N);%模拟低通滤波器的零极点向量以及增益bz,az=zp2tf(Z,P,K);%零极点增益向传递函数的转换b,a=lp2lp(bz,az,Wn);%截止频率为1rad/s的模拟低通转为截止频率为Wn的模拟低通B,A=bilinear(b,a,Fs);%双线性变换求出数字域的传递函数的分子分母系数向量H,w=freqz(B,A,512);%数字滤波器的N点频率响应向量和频率向量H=(H(1:501);w=(w(1:mag=abs(H);pha=angle(H);%响应的幅频特性和相频特性subplot(2,1,1);plot(

12、w/pi,mag);幅度以pi为单位的频率幅度响应subplot(2,1,2);plot(w/pi,pha);相位响应相位 巴特沃斯滤波器的特点是同频带的频率响应曲线最平滑,最大限度的平坦,没有起伏,在阻频带则下降为零。 由于IIR的通带截止频率是1KHz,阻带截止频率是1.5KHz。经过归一化后得到过渡带的范围就是0.2pi到0.3pi之间。在通带范围内的响应时1,阻带内是0。 在通带内的相位应该满足线性特性,但由于阻带衰减设计得比较大,线性相位的范围也就缩小了,若阻带衰减设计小一些,则可以满足相位条件。但此时的幅频响应不理想。设计性实验三:FIR数字滤波器的设计2、掌握用窗函数法设计FIR

13、数字滤波器的基本原理和设计方法。3、掌握用窗函数法设计线性相位FIR数字低通滤波器的编程实现。 窗函数设计的思想是根据给定的滤波器技术指标,选择滤波器的长度和窗函数,使其具有最窄宽度的主瓣和最小的旁瓣。核心是从给定的频率特性通过加窗确定有限长单位脉冲响应序列h(n) 由于FIR的单位冲激响应是有限长的,因此滤波器是稳定的,任何非因果有限长序列,只要经过一定的延时,都能变成因果的有限长序列,因而总能用因果系统来实现。FIR的系统函数是N-1次多项式,它在Z平面有N-1个零点,原点是N-1阶重极点,因此,H(z)是稳定的。 利用窗函数设计滤波器,是让待设计的滤波器去逼近理想特性,理想低通滤波器的频

14、率特性应该是振幅特性在通带内为1,阻带内为0,在通带内的相位特性与w成线性关系。设计步骤:1.确定数字滤波器的性能要求,确定滤波器的临界频率,滤波器的长度。2.根据性能要求,合理选择单位脉冲响应,从而确定理想频率响应的幅频特性和相频特性3.选择适合的窗函数起初所需设计的FIR滤波器的单位脉冲响应。4.若不满足,可以改变传函数的形式或者是长度N内容 用窗函数法设计一个线性相位FIR数字低通滤波器。通带截止角频率p=0.2,阻带截止角频率s=0.3 ,通带衰减Rp1dB ,阻带衰减Rs 40dB 。根据相同的滤波器要求,选用不同的窗函数进行设计,比较各种窗函数对FIR数字滤波器频率特性的影响。wp

15、=0.2*pi;ws=0.3*pi;wd=ws-wp;N=ceil(11*pi/wd) %计算滤波器阶数,矩形是1.8,汉宁是6.2,哈明是6.6,布莱克曼是11wn=(wp+ws)/2;delta_w=2*pi/1000;%频率分辨率rp=-(min(db(1:wp/delta_w+1)%实际带通衰减as=-round(max(db(ws/delta_w+1:501)%实际的最小阻带衰减%计算滤波器截止频率b=fir1(N,wn/pi,blackman(N+1);%实现线性相位的FIR滤波器设计,b为待设计的滤波器系数向量freqz(b,1,512)legend(布莱克曼窗Rp=0.0025

16、As=53N=62Rp= 0.0025As= 53N=66N=110as = 40As =53N=28验 结 果 及 分 析从上面的四个图可以看出在同样的指标下, 矩形窗,汉宁窗,哈明窗,布莱克曼窗所要求的N越来越大。N越大,滤波器的过渡带就越窄,主瓣高度与第一旁瓣高度的差值方面基本不变。旁瓣的个数越来越多,旁瓣的宽度随N的加大而减小。可以预测,在滤波器阶数相同时,在各种窗函数中矩形窗的阻带衰减最小,其次是汉宁窗,再次是哈明窗,布莱克曼窗的阻带最小衰减最大。主瓣宽度方面,汉宁窗及哈明窗一样,布莱克曼比前两种的主瓣要宽,主瓣高度与第一旁瓣高度的差值方面,汉宁窗最小,其次是哈明窗,布莱克曼窗高度差

17、最大。旁瓣衰减的速度,哈明窗比较缓慢,汉宁窗相对前两种要快,布莱克曼窗更快。旁瓣幅度方面,矩形窗最大,汉宁窗和哈明窗较大,布莱克曼窗较小。选窗时通常是希望有:1. 较低的旁瓣幅度,2. 旁瓣幅度要下降得快,以利于增加阻带衰减;3. 主瓣宽度要窄,这样滤波器过渡带较窄。由上面的几个图形可以看出,这三点难以同时满足,当选用主瓣宽度较窄时,虽然得到的幅频特性较陡峭,但通带、阻带波动会明显增加;当选用较低的旁瓣幅度时,虽然得到的幅频特性较平缓匀滑,但过渡带变宽。实 验 总 结经历了为期一周的数字信号处理课程设计,由于考试已经过了一段时间,平时学得也不怎么扎实,所以在实验过程中遇到了不少困难,结果虽然能出来,但是,好多东西都不知道它的本质是什么。数字信号处理本来应该是门很有用的课程,像频谱的分析,滤波器的设计这些方面与现在的信息数字化时代应该是联系相当紧密的一门课程。FIR由于其线性相位的优点,因此在图形和信号处理方面具有独特的优势。这次课程设计虽然经历了好多的不顺利,但是最总还是顺利的完成了四个实验的设计工作,同时,在这个过程中也感觉MATLAB挺强大了.

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1