1、只有做到对数据分析正确,才能对统计方法做出正确地选用。选用统计方法可以分为以下步骤:(1)首先,要分析一下实验数据是否合理,即所或得的数据是否适合用统计方法去处理,正确的数量化是应用统计方法的起步,如果对数量化的过程及其意义没有了解,将一些不着边际的数据加以统计处理是毫无意义的。(2)其次,要分析实验数据的类型。不同数据类型所使用的统计方法有很大差别,了解实验数据的类型和水平,对选用恰当的统计方法至关重要。(3)第三,要分析数据的分布规律,如总体方差的情况,确定其是否满足所选用的统计方法的前提条件。4.什么叫随机变量?心理与教育科学实验所获得的数据是否属于随机变量?(1)在统计学上把取值之前,
2、不能准确预料取到什么值的变量,称为随机变量。(2)心理与教育科学实验所获得的数据属于随机变量。心理与教育科学研究数据具有随机性和变异性。 科学研究中因观测人员、观测工具、观测条件的变化而具有随机变化的现象。在心理和教育科学领域,研究获得的数据资料也具有一定随机性质。观测数据的这种特点,称为变异性。即便使用同一种测量工具,观测同一事物,只要是进行多次,那么获得的数据就不会完全相同。随着测量工具的完善和精确,数据的这种随机性变化就更明显。例如,人们对同一年级或同一年龄儿童甚至对同一个人进行同一学科的学业测试,或对同一个心理特点进行评量、观察多次,得到的数据绝不会全然相同,这些数据总是在一定的范围内
3、变化。造成数据变异的原因,出自观测过程中一些偶然的不可控制的因素,称随机因素。随机因素使测量产生的误差称作随机误差。由于这种随机误差的存在,使得在相同条件下观测的结果常常不止一个,并且事前无法确定,这是客观世界存在的一种普遍现象,人们称这类现象为随机现象。在教育和心理科学的各类研究中,研究的对象是人的内在的种种心理现象,不仅由客观上一些偶然因素会引起测量误差,由实验者和被试主观上一些不可控制的偶然因素也会造成测量误差,这些偶然因素十分复杂,因而造成的随机误差就更大,也就是使心理与教育科学研究中得到的数据具有更明显的变异性。5。怎样理解总体、样本与个体。根据其各自的定义,我们可以用下面这个图来表
4、示。大圆表示研究对象的全体,也就是总体;大圆中的小圆表示其中一个样本,大圆中所有的点代表的是样本。6统计量与参数之间有何区别和关系。(1)参数是描述总体情况的统计指标;样本的特征值称作统计量。(2)区别:参数是从总体中计算得到的量数,代表总体特征,一个常数。统计量是从一个样本中计算得到的量数,它描述一组数据的情况,是一个变量,随样本的变化而变化。参数常用希腊字母表示,样本统计量用英文字母表示。(3)联系:1参数通常是通过样本特征值来预测得到,7答案略8、下述一些数据,哪些是测量数据?哪些是计数数据?其数值意味什么?(1)17.0千克(2)89.85厘米(3)199.2秒(4)17人(5)25本
5、(6)93.5分上面的数据中测量数据有:(1)17.0千克(2)89.85厘米(3)199.2秒(6)93.5分计数数据有:(4)17人(5)25本。(2)17.0千克、89.85厘米、199.2秒、93.5分,这些数据是借助一定的重量、长度、时间或一定的测量标准而获得数据,分别代表事物的重量、长度、时间或者分数。9 符号代表的意义(课本20页)分别代表(1)总体平均数,期望值(2)样本平均数(3)总体之间的相关系数(4)样本间的相关系数(5)总体标准差(6)样本标准差(7)总体间的回归系数(8)有限个体数目的总体【张书中的表示,课本19页】(9)样本容量,样本大小张厚粲现代心理与教育统计学第
6、二章答案1.统计分组应注意哪些问题?进行统计分组时需要注意下列问题:(1)分组要以被研究对象的本质特性为基础 面对大量原始数据进行分组时,有时需要先做初步的分类,分类或分组一定是要选择与被研究现象的本质的关的特性为依据,才能确保分类或分组的正确。在心理与教育学研究方面,专业知识的了解和熟悉对分组的正确进行有重要的作用。例如在学业成绩研究中按学科性质分类,在整理智力测验结果时,按言语智力、操作智力和总的智力分数分类等。(2)分类标志要明确,要能包括所有的数据 对数据进行分组时,所依据的特性称为分组或分类的标志。整理数据时,分组标志要明确并在整理数据的过程中前后一致。这就是说,关于被研究现象本质特
7、性的概念要明确,不能既是这个又是那个。另外,所依据的标志必须能将全部数据包括进去,不能有遗漏,也不能中途改变。2、直条图或叫条形图:主要用于表示离散型数据资料,即计数资料。详见课本45页。3、圆形图或叫饼图:主要用于描述间断性资料,目的是为显示多部分在整体中所占的比重大小,以及各部分之间的比较。4将下面的反应时测定资料编制成次数分布表、累积次数分布表、直方图。177.5167.4116.7130.9199.1198.3225.0212.0180.0171.0144.0138.0191.0171.5147.0172.0195.5190.0206.7153.2217.0179.2242.2212.
8、8241.0176.1165.4201.0145.5163.0178.0162.0188.1176.5172.2215.0177.9180.5193.0190.5167.3170.5189.5180.1186.3182.5160.5157.5143.5148.5146.4150.5177.1200.1143.7179.5185.5181.6(1)求全距 R=Xmax-Xmin=242.2-116.7=125.5(2)确定组数和组距N=65代入公式K=1.87(N-1)2/5,得K=9.8,理论组数为10,组距为12.5,由于理论分组不能包括116.7,因此组数定为11,组距为12.5(3)列分
9、组区间,登记与计算次数分组区间次数112.51125137.5101506162.51117516187.592004212.5225237.52合计65(4)编制次数分布表表2-1 反应时的次数分布表组中值次数(f)118.75131.25143.75156.25168.75181.25193.75206.25218.75231.25243.75(5)编制累积次数分布表表2-2反应时的累积次数分布表向上累加次数向下累加次数(f)实际累加次数相对累加次数1.000.02640.980.03630.97120.18530.82180.27470.73290.44360.56450.69200.3
10、1540.830.17580.8970.11620.9530.055、6、7忽略张厚粲现代心理与教育统计学第三章答案本答案由L老师整理。但由于本人时间及精力的限制,答案可能不是很准确,欢迎加入到QQ群资料:17019532,欢迎一起讨论。1、应用算术平均数表示集中趋势要注意什么问题:3.对于下列数据,使用何种集中量数表示集中趋势其代表性更好?并计算它们的值。(1)4 5 6 6 7 29 (2)3 4 5 7 5 (3)2 3 5 6 7 8 9(1)中数6,因为题目中有极端数据,不适合用算术平均数 (2)众数5 (3)算术平均数5.714求下列次数分布的平均数、中数。分组 f 分组 f65
11、135 34 60 430 2155 625 1650 820 1145 1615 940 2410 7解:累积次数分布如下表:分组组中值(Xc)f实际累积次数相对累积次数65670.0160555570.0750528190.1245350.22404224590.38353734930.60303221114252713020221410.9015171500.9610157(2)答:以上次数分布的平均数为36.14,中数约为36.635求下列四个年级的总平均成绩以上四个年级的总平均成绩约为91.726三个不同被试对某词的联想速度如下表,求平均联想速度先求出每个被试的联想速度:被试A的联想
12、速度X1为:13/2被试B的联想速度X2为:13/3被试C的联想速度X3为:13/2.5将数据代入公式3.7得平均联想速度为5.27下面是某校几年来毕业生的人数,问平均增加率是多少?并估计10年后的毕业人数有多少?(1)平均增加率约为11% (2)10年后的毕业人数约有1120*(1+11%)10=3180人8计算第二章习题4中次数分布表资料的平均数、中数及原始数据的平均数次数分布表资料的平均数约为177.6,次数分布表的中数约为177.5,原始数据的平均数约为1767。第四章1度量离中趋势的差异量数有哪些?为什么要度量离中趋势?(1)度量离中趋势的差异量数有全距、四分位差、百分位差、平均差、
13、标准差与方差。差异量数就是对一组数据的变异性,即离中趋势特点进行度量和描述的统计量,也称离散量数(measures of dispersion)。(2)度量离中趋势的必要性在心理与教育研究中,要全面描述一组数据的特征,不但要了解数据的典型情况,而且还要了解特殊情况。这些特殊性常表现为数据的变异性。因此,只用集中量数不可能真实地反映出它们的分布情形。为了全面反映数据的总体情况,除了必须求出集中量数外,这时还需要使用差异量数。4应用标准分数求不同质的数据总和时应注意什么问题?应用标准分数求不同质的数据总和时应注意这些不同质的观测值的次数分布应该是正态的。因为标准分是线形变化,不改变原分布的形态,只
14、有原分布是正态时,转化后的标准分才是正态的。5计算下列数据的标准差与平均差11.0 13.0 10.0 9.0 11.5 12.2 13.1 9.7 10.5把数据代入公式4.10得s=1.37把数据代入公式4.5得AD=1.19标准差约为1.37,平均差约为1.19。6计算第二章习题4所列次数人布表的标准差、四分位差标准差为26.3,四分位差为16.687今有一画线实验,标准线分别为5cm及10cm,实验结果5cm组的误差平均数为1.3cm,标准差为0.7,10cm组的误差平均数为4.3cm,标准差为1.2cm,请问用什么方法比较其离散程度的大小?并具体比较之。由于两组得平均数和标准差都有很
15、大的差异,因此应该用差异系数比较两组数据的离散程度。将数据代入公式4.15得CV1=53.85%CV2=27.91%CV1CV25cm组的差异比10cm组的离散程度大。8求下表所列各班成绩的总标准差。班级平均数标准差人数90.591.092.089.56.26.55.85.240514843应用公式4.14求解各班成绩的总标准差是6.03。第五章2假设两变量为线性关系,计算下列各种情况的相关时,应用什么方法?(1)两列变量是等距或等比的数据且均为正态分布;(2)两列变量是等距或等比的数据且但不为正态分布;(3)一变量为正态等距变量,另一列变量也为正变量,但人为分为两类;(4)一变量为正态等距变
16、量,另一列变量也为正变量,但人为分为多类;(5)一变量为正态等距变量,另一列变量为二分名义变量;(6)两变量均以等级表示(1)积差相关法(2)斯皮尔曼等级相关法(3)二列相关法(4)肯德尔W系数(5)点二列相关法(6)肯德尔等级相关法3如何区分点二列相关与二列相关?(1)点二列相关法(point-biserail correlation)就是考察两列相关观测值一个为连续变量(点变量),另一个为“二分”称名变量(二分型数据)之间相关程度的统计方法。二列相关法(biserail correlation)就是考察两列观测值一个为连续变量(点变量),另一个也是连续变量不过被按照某种标准人为的划分的二分
17、变量之间的相关程度的统计方法。(2)点二列相关与二列相关的区别。二列相关不太常用,但有些数据只适用于这种方法。在测验中,二列相关常用于对项目区分度指标的确定。有时,某一题目实际获得的测验分数是连续性测量数据,这些分数的分布为正态,当人为地根据一定标准将其得分划分为对与错、通过与不通过两个类别时,计算该题目的区分度就要使用二列相关。如果题目的类型属于错与对这样的非类客观选择题,计算该题目的区分度就要使用点二列相关。二者之间的主要区别是二分变量是否为正态分布。5欲考察甲乙丙丁四人对十件工艺美术品的等级评定是否具有一致性,用哪种相关方法?应该用肯德尔W系数6下表是平时两次考试的成绩,假设其分布是正态
18、的,分别用积差相关与等级相关方法计算相关系数,并回答,就这份资料用哪种相关法更恰当?被试A867991558275B8389788568762556用公式5.3b求两列变量的积差相关系数,得r=0.8用公式5.7a,求两列变量的斯皮尔曼等级相关系数,得rR=0.79这份资料只有10对数据,积差相关的适用条件是有30对以上的数据,因此这份资料用等级相关更恰当。7下列两面三刀变量为非正态,选用恰当的方法计算相关。X13Y14应该用相同等级计算相关的方法。应用公式5.8,5.9求解这两列变量的等级相关系数为0.978问下表中成绩与性别是否相关?性别男女成绩B9584878892根据题意可知,两列变量
19、一列为二分变量,一列为连续变量,因此计算点二列相关系数判断成绩与性别之间有无相关。利用公式:5.13求得rpb=0.83上表中成绩与性别有很强的相关,相关系数为0.839第8题的性别若改为另一种成绩A(正态分布)的及格、不及格两类,且知1、3、5、7、9被试的成绩A为及格,被试2、4、6、8、10的成绩A为不及格,请选用适当的方法计算相关,并解释之。成绩A及格不及格两列变量的相关应该用二列相关进行计算。利用公式5.14a求二列相关得rb=0.0690.2成绩A与成绩B的相关很小,成绩A的变化与成绩B的变化几乎没有关系。10下表是某新编测验的分数与教师的评价等级,请问测验与教师评定之间是否有一致
20、性?教师评定总人数优良中9080700测验分数可以看作正态分布,由于教师评定等级为四等,因此这是一个四系列相关问题。测验成绩与教师评定之间有一致性,相关系数为0.87.11下表是9名被试评价10名天文学家的等级评定结果,问这9名被试的等级评定是否具有一致性?被评价者CDEFGHIJ利用公式5.10a,得W=0.489名被试的等级评定具有中等强度的相关,相关系数为0.48.12将第11题的结果转化成为对偶比较结果,并计算肯德尔一致性系数。利用公式5.12求得肯德尔系数为0.31肯德尔一致性系数为0.31。第六章3何谓样本平均数的分布?样本平均分布是抽样分布的一种,指从基本随机变量为正态分布的一个
21、总体中,采用有放回随机抽样方法。4从N=100的学生中随机抽样,已知男生人数为35,问每次抽取1人,抽得男生的概率是多少?根据题意,符合先验概率。基本事件数为100,抽到男生的事件数为35,则抽到男生的概率为0.35抽得男生的概率是0.35。5两个骰子掷一次,出现两面个相同点数的概率是多少?方法一:利用乘法原理方法二:按照先验概率来求解得P(A)=0.167出现两个点数相同的概率为0.1676从30个白球20个黑球共50个球中随机抽取两次,问抽一黑球与一白球的概率是多少?两次皆是白球队与两次都是黑球的概率各是多少?根据题意,抽一黑球与一白球的概率符合古典概率。得抽一黑球与一白球的概率为:0.6*0.4=0
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1