ImageVerifierCode 换一换
格式:DOCX , 页数:8 ,大小:76.25KB ,
资源ID:2150700      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/2150700.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(中考压轴 二次函数综合.docx)为本站会员(b****3)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

中考压轴 二次函数综合.docx

1、中考压轴 二次函数综合中考压轴-函数综合(1)二次函数图象与其他函数图象相结合问题解决此类问题时,先根据给定的函数或函数图象判断出系数的符号,然后判断新的函数关系式中系数的符号,再根据系数与图象的位置关系判断出图象特征,则符合所有特征的图象即为正确选项(2)二次函数与方程、几何知识的综合应用将函数知识与方程、几何知识有机地结合在一起这类试题一般难度较大解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件(3)二次函数在实际生活中的应用题从实际问题中分析变量之间的关系,建立二次函数模型关键在于观察、分析、创建,建立直角坐标

2、系下的二次函数图象,然后数形结合解决问题,需要我们注意的是自变量及函数的取值范围要使实际问题有意义模块一 基础压轴【例1】如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M(1)求抛物线的解析式和对称轴; (2)在抛物线的对称轴上是否存在一点P,使PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由; (3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由 【例2】如图,已知抛物线y=-与x轴相交于A、B两点,与y轴相交于点C,若已知B点的坐标为B(8,0).(

3、1)求抛物线的解析式及其对称轴方程;(2)连接AC、BC,试判断AOC与COB是否相似?并说明理由;(3)M为抛物线上BC之间的一点,N为线段BC上的一点,若MNy轴,求MN的最大值;(4)在抛物线的对称轴上是否存在点Q,使ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.【例3】如图,抛物线过点A(3,0),B(0,2)M(m,0)为线段OA上一个动点(点M与点A不重合),过点M作垂直于x轴的直线与直线AB和抛物线分别交于点P、N(1)求直线AB的解析式和抛物线的解析式;(2)如果点P是MN的中点,那么求此时点N的坐标;(3)如果以B,P,N为顶点的三角形与APM相似

4、,求点M的坐标【例4】如图1,在平面直角坐标系中,直线y=-x+1与抛物线y=ax2+bx+c(a0)相交于点A(1,0)和点D(-4,5),并与y轴交于点C,抛物线的对称轴为直线x=-1,且抛物线与x轴交于另一点B(1)求该抛物线的函数表达式;(2)若点E是直线下方抛物线上的一个动点,求出ACE面积的最大值;(3)如图2,若点M是直线x=-1的一点,点N在抛物线上,以点A,D,M,N为顶点的四边形能否成为平行四边形?若能,请直接写出点M的坐标;若不能,请说明理由【例5】如图,在平面直角坐标系xOy中,A、B、C三点分别为坐标轴上的三个点,且OA=1,OB=3,OC=4(1)求经过A、B、C三

5、点的抛物线的解析式;(2)在平面直角坐标系xOy中是否存在一点P,使得以A、B、C、P为顶点的四边形为菱形?若存在,请求出点P的坐标;若不存在,请说明理由(3)若点M为该抛物线上一动点,在(2)的条件下,请求出当|PM-AM|为最大值时点M的坐标,并直接写出|PM-AM|的最大值【例6】如图,在平面直角坐标系中,抛物线y=x2+bx+c的图象与x轴交于点A(2,0)、B(-4,0),与y轴交于点D(1)求抛物线的解析式;(2)连接BD,点P在抛物线的对称轴上,以Q为平面内一点,四边形PBQD能否成为矩形?若能,请求出点P的坐标;若不能,请说明理由;(3)在抛物线上有一点M,过点M、A的直线MA

6、交y轴于点C,连接BC,若MBO=BCO,请直接写出点M的坐标【例7】在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(-3,0),B(1,0)两点,与y轴交于点C(1)求这个二次函数的解析式;(2)点P是直线AC上方的抛物线上一动点,是否存在点P,使ACP的面积最大?若存在,求出点P的坐标;若不存在,说明理由;(3)点Q是直线AC上方的抛物线上一动点,过点Q作QE垂直于x轴,垂足为E是否存在点Q,使以点B、Q、E为顶点的三角形与AOC相似?若存在,直接写出点Q的坐标;若不存在,说明理由【例8】如图,在平面直角坐标系xOy中,已知抛物线y=x2+bx+c与x轴交于点A(-2,

7、0)和点B,与y轴交于点C(0,-3),经过点A的射线AM与y轴相交于点E,与抛物线的另一个交点为F,且(1)求这条抛物线的表达式,并写出它的对称轴;(2)求FAB的余切值;(3)点D是点C关于抛物线对称轴的对称点,点P是y轴上一点,且AFP=DAB,求点P的坐标【例9】如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a0)与x轴相交于点A(-1,0)和点B,与y轴交于点C,对称轴为直线x=1(1)求点C的坐标(用含a的代数式表示);(2)联结AC、BC,若ABC的面积为6,求此抛物线的表达式;(3)在第(2)小题的条件下,点Q为x轴正半轴上一点,点G与点C,点F与点A关于点Q成中

8、心对称,当CGF为直角三角形时,求点Q的坐标【例10】如图,已知点A(2,0),以A为圆心作A与y轴切于原点,与x轴的另一个交点为B,过B作A的切线l(1)以直线l为对称轴的抛物线过点A,抛物线与x轴的另一个交点为点C,抛物线的顶点为点E,如果CO=2BE,求此抛物线的解析式;(2)过点C作A的切线CD,D为切点,求此切线长;(3)点F是切线CD上的一个动点,当BFC与CAD相似时,求出CF的长模块二 历年中考真题 模拟考题【例1】如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,抛物线y=x2+bx+c经过A、B两点,与x轴交于另一个点C,对称轴与直线AB交于点E,抛物线顶点为D(1

9、)求抛物线的解析式;(2)在第三象限内,F为抛物线上一点,以A、E、F为顶点的三角形面积为3,求点F的坐标;(3)点P从点D出发,沿对称轴向下以每秒1个单位长度的速度匀速运动,设运动的时间为t秒,当t为何值时,以P、B、C为顶点的三角形是直角三角形?直接写出所有符合条件的t值【例2】在直角坐标平面内,直线分别与x轴、y轴交于点A、C抛物线经过点A与点C,且与x轴的另一个交点为点B点D在该抛物线上,且位于直线AC的上方(1)求上述抛物线的表达式;(2)联结BC、BD,且BD交AC于点E,如果ABE的面积与ABC的面积之比为4:5,求DBA的余切值;(3)过点D作DFAC,垂足为点F,联结CD若C

10、FD与AOC相似,求点D的坐标【例3等腰三角形】如图,已知直线分别交x轴、y轴于点A、B,P是抛物线上的一个动点,其横坐标为a,过点P且平行于y轴的直线交直线于点Q,则当PQ=BQ时,a的值是_ 【例4】如图,抛物线y=ax2+bx过A(4,0),B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BHx轴,交x轴于点H(1)求抛物线的表达式;(2)点P是抛物线上一动点,且位于第四象限,当ABP的面积为6时,求出点P的坐标;(3)若点M在直线BH上运动,点N在x轴上运动,当以点C、M、N为顶点的三角形为等腰直角三角形时,请直接写出此时CMN的面积【例5】如图,在平面直角坐标系中,O为

11、原点,平行四边形ABCD的边BC在x轴上,D点在y轴上,C点坐标为(2,0),BC=6,BCD=60,点E是AB上一点,AE=3EB,P过D,O,C三点,抛物线y=ax2+bx+c过点D,B,C三点(1)求抛物线的解析式;(2)说明ED是P的切线,若将ADE绕点D逆时针旋转90,E点的对应点E会落在抛物线上吗?请说明理由;(3)若点M为此抛物线的顶点,平面上是否存在点N,使得以点B,D,M,N为顶点的四边形为平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由【例6】如图,抛物线y=-x2-2x+3的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点(1

12、)求点A、B、C的坐标;(2)点M(m,0)为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQAB交抛物线于点Q,过点Q作QNx轴于点N,可得矩形PQNM如图,点P在点Q左边,试用含m的式子表示矩形PQNM的周长;(3)当矩形PQNM的周长最大时,m的值是多少?并求出此时的AEM的面积;(4)在(3)的条件下,当矩形PMNQ的周长最大时,连接DQ,过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方)若FG=DQ,求点F的坐标【例7】如图,抛物线y=-x2+2,与x轴交于点A,B,与y轴交于点C点P是线段BC上的动点

13、(点P不与B,C重合),连接并延长AP交抛物线于另一点Q,设点Q的横坐标为x(1)写出点A,B,C的坐标:A ;B ;C ;求证:ABC是直角三角形;(2)记BCQ的面积为S,求S关于x的函数表达式;(3)在点P的运动过程中,是否存在最大值?若存在,求出的最大值及点Q的坐标;若不存在,请说明理由 【例8】如图,抛物线y=x2-3x交x轴的正半轴于点A,点B(,a)在抛物线上,点C是抛物线对称轴上的一点,连接AB、BC,以AB、BC为邻边作ABCD,记点C纵坐标为n,(1)求a的值及点A的坐标;(2)当点D恰好落在抛物线上时,求n的值;(3)记CD与抛物线的交点为E,连接AE,BE,当AEB的面

14、积为7时,n=_(直接写出答案)【例9】如图,在平面直角坐标系中,直线y=-x+1与抛物线y=ax2+bx-3交于A、B两点,点B在x轴上,点A的纵坐标为3点P是直线AB下方的抛物线上一动点(不与A、B点重合),过点P作x轴的垂线交直线AB于点D,作PCAB于点C(1)求a、b及sinBDP的值;(2)设点P的横坐标为m;用含有m的代数式表示线段PD的长,并求出线段PC的最大值;连接PA,线段PD把PAC分成两个三角形,是否存在适合的m值,使这两个三角形的面积之比为8:9?若存在,请求出m的值;若不存在,说明理由是否存在点P使得由点P、C、A组成的三角形与PCD相似?若存在,请求出点P的坐标;

15、若不存在,请说明理由【例10】如图,已知抛物线y=x2+bx+c与x轴交于A,B两点(A点在B点左侧),与y轴交于点C(0,-3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D(1)求抛物线的函数表达式;(2)求直线BC的函数表达式;(3)点E为y轴上一动点,CE的垂直平分线交CE于点F,交抛物线于P、Q两点,且点P在第三象限当线段PQ=AB时,求tanCED的值;当以点C、D、E为顶点的三角形是直角三角形时,请直接写出点P的坐标【例11】如图,RtOAB如图所示放置在平面直角坐标系中,直角边OA与x轴重合,OAB=90,OA=4,AB=2,把RtOAB绕点O逆时针旋转90,点B旋转到点C的位置,一条抛物线正好经过点O,C,A三点(1)求该抛物线的解析式;(2)在x轴上方的抛物线上有一动点P,过点P作x轴的平行线交抛物线于点M,分别过点P,点M作x轴的垂

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1