1、6双曲线的定义,第一定义:满足|PF1|-|PF2|=2a(2a0)的点P的轨迹;到定点的距离与到定直线距离之比为常数e(1)的点的轨迹。7双曲线的方程:中心在原点,焦点在x轴上的双曲线方程为焦点在y轴上的双曲线的标准方程为8双曲线的相关概念,中心在原点,焦点在x轴上的双曲线(a, b0),a称半实轴长,b称为半虚轴长,c为半焦距,实轴的两个端点为(-a, 0), (a, 0). 左、右焦点为F1(-c,0), F2(c, 0),对应的左、右准线方程分别为离心率,由a2+b2=c2知e1。两条渐近线方程为,双曲线与有相同的渐近线,它们的四个焦点在同一个圆上。若a=b,则称为等轴双曲线。9双曲线
2、的常用结论,1)焦半径公式,对于双曲线,F1(-c,0), F2(c, 0)是它的两个焦点。设P(x,y)是双曲线上的任一点,若P在右支上,则|PF1|=ex+a, |PF2|=ex-a;若P(x,y)在左支上,则|PF1|=-ex-a,|PF2|=-ex+a.2) 过焦点的倾斜角为的弦长是10抛物线:平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线,点F叫焦点,直线l叫做抛物线的准线。若取经过焦点F且垂直于准线l的直线为x轴,x轴与l相交于K,以线段KF的垂直平分线为y轴,建立直角坐标系,设|KF|=p,则焦点F坐标为,准线方程为,标准方程为y2=2px(p0),离心率e=1.
3、11抛物线常用结论:若P(x0, y0)为抛物线上任一点,1)焦半径|PF|=2)过点P的切线方程为y0y=p(x+x0);3)过焦点倾斜角为的弦长为12极坐标系,在平面内取一个定点为极点记为O,从O出发的射线为极轴记为Ox轴,这样就建立了极坐标系,对于平面内任意一点P,记|OP|=,xOP=,则由(,)唯一确定点P的位置,(,)称为极坐标。13圆锥曲线的统一定义:到定点的距离与到定直线的距离的比为常数e的点P,若01,则点P的轨迹为双曲线的一支;若e=1,则点P的轨迹为抛物线。这三种圆锥曲线统一的极坐标方程为二、方法与例题1与定义有关的问题。例1 已知定点A(2,1),F是椭圆的左焦点,点P
4、为椭圆上的动点,当3|PA|+5|PF|取最小值时,求点P的坐标。解 见图11-1,由题设a=5, b=4, c=3,.椭圆左准线的方程为,又因为,所以点A在椭圆内部,又点F坐标为(-3,0),过P作PQ垂直于左准线,垂足为Q。由定义知,则|PF|=|PQ|。所以3|PA|+5|PF|=3(|PA|+|PF|)=3(|PA|+|PQ|)3|AM|(AM左准线于M)。所以当且仅当P为AM与椭圆的交点时,3|PA|+5|PF|取最小值,把y=1代入椭圆方程得,又x0).F坐标为(-c, 0).设另一焦点为连结,OP,则所以|FP|+|PO|=(|FA|+|A|)=a.所以点P的轨迹是以F,O为两焦
5、点的椭圆(因为a|FO|=c),将此椭圆按向量m=(,0)平移,得到中心在原点的椭圆:由平移公式知,所求椭圆的方程为解法二 相关点法。设点P(x,y), A(x1, y1),则,即x1=2x+c, y1=2y. 又因为点A在椭圆上,所以代入得关于点P的方程为它表示中心为,焦点分别为F和O的椭圆。例4 长为a, b的线段AB,CD分别在x轴,y轴上滑动,且A,B,C,D四点共圆,求此动圆圆心P的轨迹。解 设P(x, y)为轨迹上任意一点,A,B,C,D的坐标分别为A(x-,0), B(x+,0), C(0, y-), D(0, y+), 记O为原点,由圆幂定理知|OA|?|OB|=|OC|?|O
6、D|,用坐标表示为,即当a=b时,轨迹为两条直线y=x与y=-x;当ab时,轨迹为焦点在x轴上的两条等轴双曲线;当a0, b0)的右焦点F作B1B2轴,交双曲线于B1,B2两点,B2与左焦点F1连线交双曲线于B点,连结B1B交x轴于H点。H的横坐标为定值。 设点B,H,F的坐标分别为(asec,btan), (x0, 0), (c, 0),则F1,B1,B2的坐标分别为(-c, 0), (c, ), (c, ),因为F1,H分别是直线B2F,BB1与x轴的交点,所以所以由得代入上式得即(定值)。注:本例也可借助梅涅劳斯定理证明,读者不妨一试。例7 设抛物线y2=2px(p0)的焦点为F,经过点
7、F的直线交抛物线于A,B两点,点C在准线上,且BC/x轴。证明:直线AC经过定点。 设,焦点为由于?y2-y1=0,即=0。因为所以,即直线AC经过原点。例8 椭圆上有两点A,B,满足OAOB,O为原点,求证:为定值。 设|OA|=r1,|OB|=r2,且xOA=,xOB=,则点A,B的坐标分别为A(r1cos, r1sin),B(-r2sin,r2cos)。由A,B在椭圆上有+得4最值问题。例9 设A,B是椭圆x2+3y2=1上的两个动点,且OAOB(O为原点),求|AB|的最大值与最小值。 由题设a=1,b=,记|OA|=r1,|OB|=r2,,参考例8可得=4。设m=|AB|2=,,且a
8、2b2,所以,所以br1a,同理br2a.所以又函数f(x)=x+在上单调递减,在上单调递增,所以当t=1即|OA|=|OB|时,|AB|取最小值1;当或时,|AB|取最大值例10 设一椭圆中心为原点,长轴在x轴上,离心率为,若圆C:1上点与这椭圆上点的最大距离为,试求这个椭圆的方程。 设A,B分别为圆C和椭圆上动点。由题设圆心C坐标为,半径|CA|=1,因为|AB|BC|+|CA|=|BC|+1,所以当且仅当A,B,C共线,且|BC|取最大值时,|AB|取最大值,所以|BC|最大值为所以可设椭圆半长轴、半焦距、半短轴长分别为2t,t,椭圆方程为,并设点B坐标为B(2tcos,tsin),则|
9、BC|2=(2tcos)2+=3t2sin2-3tsin+4t2=-3(tsin+)2+3+4t2.若,则当sin=-1时,|BC|2取最大值t2+3t+,与题设不符。若t,则当sin=时,|BC|2取最大值3+4t2,由3+4t2=7得t=1.所以椭圆方程为5直线与二次曲线。例11 若抛物线y=ax2-1上存在关于直线x+y=0成轴对称的两点,试求a的取值范围。 抛物线y=ax2-1的顶点为(0,-1),对称轴为y轴,存在关于直线x+y=0对称两点的条件是存在一对点P(x1,y1),(-y1,-x1),满足y1=a且-x1=a(-y1)2-1,相减得x1+y1=a(),因为P不在直线x+y=
10、0上,所以x1+y10,所以1=a(x1-y1),即x1=y1+此方程有不等实根,所以,求得,即为所求。例12 若直线y=2x+b与椭圆相交,(1)求b的范围;(2)当截得弦长最大时,求b的值。解 二方程联立得17x2+16bx+4(b2-1)=0.由0,得b0),则动点的轨迹是_.3椭圆上有一点P,它到左准线的距离是10,它到右焦点的距离是_.4双曲线方程,则k的取值范围是_.5椭圆,焦点为F1,F2,椭圆上的点P满足F1PF2=600,则F1PF2的面积是_.6直线l被双曲线所截的线段MN恰被点A(3,-1)平分,则l的方程为_.7ABC的三个顶点都在抛物线y2=32x上,点A(2,8),
11、且ABC的重心与这条抛物线的焦点重合,则直线BC的斜率为_.8已知双曲线的两条渐近线方程为3x-4y-2=0和3x+4y-10=0,一条准线方程为5y+4=0,则双曲线方程为_.9已知曲线y2=ax,与其关于点(1,1)对称的曲线有两个不同的交点,如果过这两个交点的直线的倾斜角为450,那么a=_.10.P为等轴双曲线x2-y2=a2上一点,的取值范围是_.11已知椭圆与双曲线有公共的焦点F1,F2,设P是它们的一个焦点,求F1PF2和PF1F2的面积。12已知(i)半圆的直径AB长为2r;(ii)半圆外的直线l与BA的延长线垂直,垂足为T,设|AT|=2a(2a1)的一个顶点C(0,1)为直
12、角顶点作此椭圆的内接等腰直角三角形ABC,这样的三角形最多可作_个.11求椭圆上任一点的两条焦半径夹角的正弦的最大值。12设F,O分别为椭圆的左焦点和中心,对于过点F的椭圆的任意弦AB,点O都在以AB为直径的圆内,求椭圆离心率e的取值范围。13已知双曲线C1:0),抛物线C2的顶点在原点O,C2的焦点是C1的左焦点F1。(1)求证:C1,C2总有两个不同的交点。(2)问:是否存在过C2的焦点F1的弦AB,使AOB的面积有最大值或最小值?若存在,求直线AB的方程与SAOB的最值,若不存在,说明理由。五、联赛一试水平训练题1在平面直角坐标系中,若方程m(x2+y2+2y+1)=(x-2y+3)2表
13、示的曲线为椭圆,则m的取值范围是_.2设O为抛物线的顶点,F为焦点,且PQ为过F的弦,已知|OF|=a,|PQ|=b,OPQ面积为_.3给定椭圆,如果存在过左焦点F的直线交椭圆于P,Q两点,且OPOQ,则离心率e的取值范围是_.4设F1,F2分别是双曲线0)的左、右焦点,P为双曲线上的动点,过F1作F1PF2平分线的垂线,垂足为M,则M的轨迹为_.5ABC一边的两顶点坐标为B(0,)和C(0,),另两边斜率的乘积为,若点T坐标为(t,0)(tR+),则|AT|的最小值为_.6长为l(l1)的线段AB的两端点在抛物线y=x2上滑动,则线段AB的中点M到x轴的最短距离等于_.7已知抛物线y2=2p
14、x及定点A(a,b),B(-a,0),ab0,b22pa,M是抛物线上的点,设直线AM,BM与抛物线的另一个交点分别为M1,M2,当M变动时,直线M1M2恒过一个定点,此定点坐标为_.8已知点P(1,2)既在椭圆内部(含边界),又在圆x2+y2=外部(含边界),若a,bR+,则a+b的最小值为_.9已知椭圆的内接ABC的边AB,AC分别过左、右焦点F1,F2,椭圆的左、右顶点分别为D,E,直线DB与直线CE交于点P,当点A在椭圆上变动时,试求点P的轨迹。10设曲线C1:(a为正常数)与C2:y2=2(x+m)在x轴上方有一个公共点P。(1)求实数m的取值范围(用a表示);(2)O为原点,若C1
15、与x轴的负半轴交于点A,当0a0),P(x,y)为轨迹上任一点,则化简为2k2x2+2y2=m2(1+k2).当k1时,表示椭圆;当k=1时,表示圆。312由题设a=10,b=6,c=8,从而P到左焦点距离为10e=10=8,所以P到右焦点的距离为20-8=12。4-2k2或k5.由(|k|-2)(5-k)5或-22.5.设两条焦半径分别为m,n,则因为|F1F2|=12,m+n=20.由余弦定理得122=m2+n2-2mncos600,即(m+n) 2-3mn=144.所以63x+4y-5=0.设M(x1,y1),N(x2,y2),则两式相减得-(y1+y2)(y1-y2)=0.由,得故方程
16、y+1=(x-3).7.-4.设B(x1,y1),C(x2,y2),则=0,所以y1+y2=-8,故直线BC的斜率为8=1。由渐近线交点为双曲线中心,解方程组得中心为(2,1),又准线为,知其实轴平行于y轴,设其方程为其渐近线方程为所以y-1=(x-1).由题设,将双曲线沿向量m=(-2,-1)平移后中心在原点,其标准方程为由平移公式平移后准线为,再结合,解得a2=9,b2=16,故双曲线为92曲线y2=ax关于点(1,1)的对称曲线为(2-y)2=a(2-x),由得y2-2y+2-a=0,故y1+y2=2,从而=1,所以a=2.10(2,。设P(x1,y1)及,由|PF1|=ex1+a,|P
17、F2|=ex1-a,|PF1|+|PF2|=2ex1, 所以因即20,设x1,x2是方程的两根,由韦达定理 由,得 y1+y2=kx1+(1-2k)+kx2+(1-2k)=k(x1+x2)+2(1-2k)= 设P1P2的中点P坐标(x,y),由中点公式及,得消去k得点(2,0)满足此方程,故这就是点P的轨迹方程。高考水平测试题1由椭圆方程得焦点为,设双曲线方程,渐近线为由题设,所以a2=3b2,又,c2=a2+b2. 所以b2=12, a2=36.2. 900。见图1,由定义得|FA|=|AA1|,|FB|=|BB1|,有1=BFB1,2=AFA1,又1=3,2=4,所以3+4=BFB1+AFA1=900。3相切,若P(x,y)在左支上,设F1为左焦点,F2为右焦点,M为PF1中点,则|MO|=|PF2|=(a-ex),又|PF1|=-a-ex,所以两圆半径之和(-a-ex)+a=(a-ex)=|MO|,所以两圆外切。当P(x,y)在右支
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1