ImageVerifierCode 换一换
格式:DOCX , 页数:45 ,大小:369.21KB ,
资源ID:21174042      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/21174042.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(第二章 线性规划Word文档格式.docx)为本站会员(b****6)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

第二章 线性规划Word文档格式.docx

1、产品乙设备能力(h)设备A65设备B40设备C75利润(元/件)15002500问题:工厂应如何安排生产可获得最大的总利润? 解:设变量xi为第i种(甲、乙)产品的生产件数(i1,2)。根据题意,我们知道两种产品的生产受到设备能力(机时数)的限制。对设备A,两种产品生产所占用的机时数不能超过65,于是我们可以得到不等式:3 x1 + 2 x2 65; 对设备B,两种产品生产所占用的机时数不能超过40,于是我们可以得到不等式:2 x1 + x2 40; 对设备C,两种产品生产所占用的机时数不能超过75,于是我们可以得到不等式:3x2 75 ;另外,产品数不可能为负,即 x1 ,x2 0。同时,我

2、们有一个追求目标,即获取最大利润。于是可写出目标函数z为相应的生产计划可以获得的总利润:z=1500x1+2500x2 。综合上述讨论,在加工时间以及利润与产品产量成线性关系的假设下,把目标函数和约束条件放在一起,可以建立如下的线性规划模型:目标函数 Max z =1500x1+2500x2约束条件 s.t. 3x1+2x2 65 2x1+x2 40 3x2 75 x1 ,x2 0 这是一个典型的利润最大化的生产计划问题。其中,“Max”是英文单词“Maximize”的缩写,含义为“最大化”;“s.t.”是“subject to”的缩写,表示“满足于”。因此,上述模型的含义是:在给定条件限制下

3、,求使目标函数z达到最大的x1 ,x2 的取值。一般形式 : 目标函数:Max(Min)z = c1x1 + c2x2 + + cnxn 约束条件:a11x1+a12x2+a1nxn( =, )b1a21x1+a22x2+a2nxn( =, )b2 .am1x1+am2x2 +amnxn( =, )bm x1 ,x2 , ,xn 0标准形式:Max z = c1x1 + c2x2 + + cnxna11x1 + a12x2 + + a1nxn = b1a21x1 + a22x2 + + a2nxn = b2 . am1x1 + am2x2 + + amnxn = bm可以看出,线性规划的标准形

4、式有如下四个特点:目标最大化、约束为等式、决策变量均非负、右端项非负。 对于各种非标准形式的线性规划问题,我们总可以通过以下变换,将其转化为标准形式:1.极小化目标函数的问题: 设目标函数为: Min f = c1x1 + c2x2 + + cnxn 则可以令z -f ,该极小化问 题与下面的极大化问题有相同的最优解,即 Max z = -c1x1 - c2x2 - - cnxn 但必须注意,尽管以上两个问题的最优解相同,但他们最优解的目标函数值却相差一个符号,即 Min f - Max z2、约束条件不是等式的问题: 设约束条件为 ai1 x1+ai2 x2+ +ain xn bi 可以引进

5、一个新的变量s ,使它等于约束右边与左边之差 s=bi(ai1 x1 + ai2 x2 + + ain xn ) 显然,s 也具有非负约束,即s0, 这时新的约束条件成为 ai1 x1+ai2 x2+ +ain xn+s = bi当约束条件为 ai1 x1+ai2 x2+ +ain xn bi 时,类似地令 s=(ai1 x1+ai2 x2+ +ain xn)- bi 显然,s 也具有非负约束,即s0,这时新的约束条件成为 ai1 x1+ai2 x2+ +ain xn-s = bi为了使约束由不等式成为等式而引进的变量s称为“松弛变量”。如果原问题中有若干个非等式约束,则将其转化为标准形式时,

6、必须对各个约束引进不同的松弛变量。例2.2:将以下线性规划问题转化为标准形式 Min f = 3.6 x1 - 5.2 x2 + 1.8 x3 s. t. 2.3 x1 + 5.2 x2 - 6.1 x3 15.7 4.1 x1 + 3.3 x3 8.9 x1 + x2 + x3 = 38 x1 , x2 , x3 0解:首先,将目标函数转换成极大化:令 z= -f = -3.6x1+5.2x2-1.8x3 其次考虑约束,有2个不等式约束,引进松弛变量x4,x5 0。于是,我们可以得到以下标准形式的线性规划问题:Max z = - 3.6 x1 + 5.2 x2 - 1.8 x3s.t. 2.

7、3x1+5.2x2-6.1x3+x4= 15.7 4.1x1+3.3x3-x5= 8.9 x1+x2+x3= 38 x1 ,x2 ,x3 ,x4 ,x5 03. 变量无符号限制的问题:在标准形式中,必须每一个变量均有非负约束。当某一个变量xj没有非负约束时,可以令 xj = xj- xj”其中 xj0,xj”0即用两个非负变量之差来表示一个无符号限制的变量,当然xj的符号取决于xj和xj”的大小。4.右端项有负值的问题:在标准形式中,要求右端项必须每一个分量非负。当某一个右端项系数为负时,如 bim,秩(A) = m,b Rm 。在约束等式中,令n维空间的解向量: x = (x1,x2,xn)

8、T 中n-m个变量为零,如果剩下的m个变量在线性方程组中有唯一解,则这n个变量的值组成的向量x就对应于n维空间Rn中若干个超平面的一个交点。当这n个变量的值都是非负时,这个交点就是线性规划可行域的一个极点。 根据以上分析,我们建立以下概念: (1)线性规划的基:对于线性规划的约束条件 Ax=b, x0 设B是A矩阵中的一个非奇异(可逆)的mm子矩阵,则称B为线性规划的一个基。用前文的记号,A=( p1 ,p2 ,pn ) ,其中 pj=( a1j ,a2j ,amj )T Rm ,任取A中的m个线性无关列向量 pj Rm 构成矩阵 B=( pj1 ,pj2 ,pjm )。那么B为线性规划的一个

9、基。 我们称对应于基B的变量xj1 ,xj2,xjm为基变量;而其他变量称为非基变量。 可以用矩阵来描述这些概念。 设B是线性规划的一个基,则A可以表示为 A= B , N x也可相应地分成 xB x= xN 其中xB为m维列向量,它的各分量称为基变量,与基B的列向量对应;xN为n-m列向量,它的各分量称为非基变量,与非基矩阵N的列向量对应。这时约束等式Ax=b可表示为 xB ( B,N ) = b xN 或 BxB + NxN = b 如果对非基变量xN取确定的值,则xB有唯一的值与之对应 xB = B-1b - B-1NxN 特别,当取xN = 0,这时有xB=B-1b。关于这类特别的解,

10、有以下概念。(2)线性规划问题的基本解、基本可行解和可行基: 对于线性规划问题,设矩阵B = ( pj1,pj2,pjm ) 为一个基,令所有非基变量为零,可以得到m个关于基变量xj1 ,xj2 ,xjm的线性方程,解这个线性方程组得到基变量的值。我们称这个解为一个基本解;若得到的基变量的值均非负,则称为基本可行解,同时称这个基B为可行基。 矩阵描述为,对于线性规划的解 xB B-1b x= = xN 0 称为线性规划与基B对应的基本解。若其中B-1b 0,则称以上的基本解为一基本可行解,相应的基B称为可行基。 我们可以证明以下结论:线性规划的基本可行解就是可行域的极点。 这个结论被称为线性规

11、划的基本定理,它的重要性在于把可行域的极点这一几何概念与基本可行解这一代数概念联系起来,因而可以通过求基本可行解的线性代数的方法来得到可行域的一切极点,从而有可能进一步获得最优极点。 例2.9: 考虑例2.8的线性规划模型 s.t. 3 x1 + 2 x2 + x3 = 65 2 x1 + x2 + x4 = 40 3 x2 + x5 = 75 x1 , x2 , x3 , x4 , x5 0 注意,线性规划的基本解、基本可行 解(极点)和可行基只与线性规划问 题标准形式的约束条件有关。 3 2 1 0 0A = P1 ,P2 ,P3 ,P4 ,P5 = 2 1 0 1 0 0 3 0 0 1

12、 A矩阵包含以下10个33的子矩阵: B1=p1 ,p2 ,p3 B2=p1 ,p2 ,p4 B3=p1 ,p2 ,p5 B4=p1 ,p3 ,p4 B5=p1 ,p3 ,p5 B6=p1 ,p4 ,p5 B7=p2 ,p3 ,p4 B8=p2 ,p3 ,p5 B9=p2 ,p4 ,p5 B10=p3 ,p4 ,p5 其中 B4 = 0,因而B4不是该线性规划问题的基。其余均为非奇异方阵,因此该问题共有9个基。 对于基B3=p1 ,p2 ,p5,令非基变量x3 = 0, x4 = 0,在等式约束中令x3 = 0,x4 = 0,解线性方程组:3 x1 + 2 x2 + 0 x5 = 65 2 x

13、1 + x2 + 0 x5 = 40 0 x1 + 3 x2 + x5 = 75 得到x1 =15,x2 = 10,x5 = 45,对应的基本可行解: x=(x1 ,x2 ,x3 ,x4 ,x5)T=(15,10,0,0,45)T。于是对应的基B3是一个可行基。 类似可得到 x(2) = (5,25,0,5,0)T (对应B2) x(7) = (20,0,5,0,75)T (对应B5) x(8) = (0,25,15,15,0)T (对应B7) x(9) = (0,0,65,40,75)T (对应B10) 是基本可行解; 而x(3)= (0,32.5,0,7.5,-22.5)T(对应B9) x

14、(4)= (65/3,0,0,-10/3,75)T (对应B6) x(5)= (7.5,25,-7.5,0,0)T (对应B1) x(6) = (0,40,-15,0,-45)T (对应B8) 是基本解。 因此,对应基本可行解(极点) 的B2 B3 B5 B7 B10都是可行基。 这里指出了一种求解线性规划问题的可能途径,就是先确定线性规划问题的基,如果是可行基,则计算相应的基本可行解以及相应解的目标函数值。由于基的个数是有限的(最多个),因此必定可以从有限个基本可行解中找到最优解。四.单 纯 形 法(选讲)利用求解线性规划问题基本可行解(极点)的方法来求解较大规模的问题是不可行的。单纯形法的

15、基本思路是有选择地取基本可行解,即是从可行域的一个极点出发,沿着可行域的边界移到另一个相邻的极点,要求新极点的目标函数值不比原目标函数值差。由上节的讨论可知,对于线性规划的一个基,当非基变量确定以后,基变量和目标函数的值也随之确定。因此,一个基本可行解向另一个基本可行解的移动,以及移动时基变量和目标函数值的变化,可以分别由基变量和目标函数用非基变量的表达式来表示。同时,当可行解从可行域的一个极点沿着可行域的边界移动到一个相邻的极点的过程中,所有非基变量中只有一个变量的值从0开始增加,而其他非基变量的值都保持0不变。考虑标准形式的线性规划问题:Max z = c1x1 + c2x2 + + cnxn s.t. a11 x1 + a12 x2 + + a1n xn = b1 a21 x1 + a22 x2 + + a2n xn = b2 . . am1 x1 +

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1