ImageVerifierCode 换一换
格式:DOCX , 页数:20 ,大小:395.90KB ,
资源ID:21097522      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/21097522.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(火电机组送风控制系统课程设计Word格式.docx)为本站会员(b****5)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

火电机组送风控制系统课程设计Word格式.docx

1、使送风量与燃料量有合适的比例,实现经济运行;使炉膛压力控制在设定值附近,保证安全运行。2 送风自动控制系统2. 1 送风量控制系统实现送风量自动控制的一个关键是送风量的准确测量。现代大型锅炉一般分设一次风和二次风,有些锅炉还有三次风,因此总风量是这三种风的流量之和。常用的风量测量装置有对称机翼型和复式文丘里管。一些简单的测量装置,有装于风机入口的弯头测风装置和装于举行风道内的挡风板等。在协调控制中,氧量风量控制是燃烧控制的重要组成部分,其对于保证锅炉燃烧过程的经济性和稳定性起着决定性作用。在稳态时 根据锅炉主控指令的要求协调控制燃料量和送风量,保持适当的风煤比,即保证一定的炉膛出口过剩空气系数

2、a,在动态调节过程中,必须保证增加负荷时先增加送风量再增加燃料量,降负荷时先减少燃料量再减少送风量,保证送风量大于给煤量,以达到空气与燃料交叉限制的目的。 由于到目前为止,还没有找到一种有效的方法来准确地测量给煤量信号,工程实际中一般以烟气含氧量作为给煤量的一种间接反馈信号。烟气含氧量是一个非常重要的指标。氧量过低,证明燃料没有充分燃烧,浪费燃料又增加了有害气体排放,氧量过高,使送引风机的耗电量增加,造成烟气中的Nox、SO2排放量增多。锅炉运行中,当过剩空气量增多时,不仅使炉膛温度下降,而且也使最重要的烟气热损失增加。因此,过剩空气量要有一个最优值,即所谓的最经济燃烧,过剩空气量常用过剩空气

3、系数a来表示,即实际空气量QP与理论空气量QT之比: A=QP/QT 过量空气系数还可以用炉膛出口烟气中的含氧量 O2来衡量,完全燃烧情况下空气系数与O2的关系为: =21/(21- O2)由上式可知和 O2成反比关系,控制就可以达到控制烟气中含氧量 O2的目的,其中含氧量一般都控制在 5左右,含氧量信号具有时间延迟短,对判断是否充分燃烧反映快等优点。因此,可将送风调节系统直接看成是氧量调节的过程送风控制系统一个带有氧量校正的串级回路控制系统,所谓串级回路控制系统,就是采用两个控制器串联工作,主控制器的输出作为副控制器的设定值,由副控制器的输出去操纵调节阀,从而对主被控变量具有更好的控制效果。

4、2. 2模糊自整PID控制器的调节方案控制策略常规的 PID 算法为:u(k)=kpE(k)+E(k)+KDEC(k)其中 E(k)为输入量偏差 EC(k)为偏差变化 Kp、Ki、Kd 分别表示比例系数、积分系数、微分系数。糊自整 PID 控制器是模糊控制器与传统PID控制器的结合,在常规 PID 控制器的基础之上,根据E 和 EC(E和EC是输入偏差e和偏差变化率ec经过输入量化后的语言变量),利用模糊推理思想,PID控制器参数与进行在线自整定。PID 参数模糊整定模型 在不同情况下被控过程的对 Kp、Ki、Kd 三个参数的要求可以归纳为:1 当E较大时,为了避免系统出现大的超调,须采用积分

5、分离法令 Ki0;为了让系统有较好的快速跟踪性能,Kp尽可能取较大值,Kd 尽可能取较小值。2 当E中等大时,为了使系统超调量较小,Kp 应该取较小值Ki取中等值。3 当E较小时,为了使系统具有较好的稳态性能,Kp、Ki应该取较大值,为了避免系统出现振荡 Kd 取中等值。 改模糊控制系统是一个二输入三输出的,输入语言变量论域为:E(3 3),EC(3 3),Kp(0.5 1),Ki(0 0.5),Kd(0 20).在输入输出语言变量各自论域上定义了7个模糊子集,记为NB,NM,NS,ZO,PS,PM,PB,语言值得模糊子集取为三角形隶属函数。根据参数自要求可以写出 Kp、Ki、Kd 三个参数的

6、模糊规则。控制系统建模与仿真 使用 Matlab 建立模糊控制规则 在 Matlab 中输入 fuzzy,如图3所示。 图3 Matlab模糊控制系统图对控制系统进行仿真分析,先用凑试法试出控制器最佳的PID参数,再对采用了模糊PID控制器的控制系统进行仿真,讲两者结果进行比较。可以看出采用模糊PID控制器的系统响应略快与普通PID控制器,但是控制时间只有 30s 比普通 PID 控制器的 80s 大大缩短,并且没超调量而普通PID控制器调量为10%。 仿真结果显示普通PID控制器的控制时间为150s超调量为5%,但模糊PID的控制时间为100s且超调量为0,调节品质好于普通PID。入口扰动仿

7、真 将系统输入设置为0,入口扰动设置为20%再进行仿真。 采用模糊PID控制系统过渡时间为80s,优于普通PID的110s。 普通PID控制系统的过渡时间近200s,而模糊PID的过渡时间120s。图4送风控制系统阶跃响应图图5 送风调节系统入口扰动响应曲线2. 3送风控制系统的分析热风送粉煤粉炉燃烧控制系统是火力发电机组主要的控制系统之一,而送风调节系统的调节作用是这一系统能顺利工作的前提,送风调节系统的任务是通过调节送风机入口挡板,使烟气中的含氧量保持最佳值, 从而保证锅炉燃烧系统配置最佳定燃比,使锅炉达到最高的热效率。恰使燃料完全燃烧所需的空气量标为理论空气量,实际上按理论空气量无法达到

8、完全燃烧的目的, 一般总要使送风量比理论空气量多一些。 送风系统的被控对象为炉膛,它是惯性和迟延都比较小的自衡对象。调节量之一为送入膛的空气量,当空气量不变,燃料量增加时,使空气量与燃料量比值下降,烟气中的含氧量降低,当燃料量不变,空气量增加时,烟气中的含氧量增加,控制系统应使送风量与燃料量协调变化,以保证经济性。另外,也有采用锅炉排烟中的氧气量作为调节信号的系统。种系统具有明显的缺点,一是很难找出能代表整个炉膛含氧量的准确测点,因而样量计测出的信号值得怀疑。二是氧量计测出的整个炉膛氧量的平均值,不能保证每个燃烧器的完全燃烧。2. 4风量控制任务和控制方式 风量控制子回路用来满足锅炉主控制器发

9、出的风量请求, 并维持燃烧稳定以及保证合适的风煤配比, 使锅炉燃烧系统达到最高热效率。入炉总风量等于二次风量和一次风量之和, 其中一次风量是运行中各台磨煤机入口的一次风量之和。为了测量精确, 各个风量测量信号均需要经过风温信号的修正。送风控制系统根据总风量和总风量设定值的偏差给出 2台送风机各自入口动叶开度的控制指令。对于超临界直流锅炉机组的直吹式系统设计有总风量与总燃料量信号之间的交叉限制,以确保锅炉的富氧燃烧。风量控制主要有两种基本方式: 一种是由送风机调节风量, 二次风挡板调整风箱与炉膛的差压; 另一种是由二次风挡板调节风量, 送风机调整风箱压力。 一般来说, 采用第一种方式的控制系统能

10、够较快获得风量响应, 因为在第二种方式中, 用二次风挡板调节风量最终也要等送风机出口风压回复到稳态值才能真正获得风量。2. 5送风机的控制 本文的分析对象是600 MW 超临界机组, 采用正压直吹式中速磨煤系统,36 只旋流燃烧器分3 层布置在前后墙, 形成对冲燃烧, 每个燃烧器配备有高能点火器及点火油枪,另外配12 只启动油枪作为低负荷稳燃用。燃烧用风分为直流一次风、直流二次风和旋流三次风。采用每层燃烧器二次风箱配风和每个油枪中心配风的方式, 在每层二次风风道上各有2 个测风装置作为计量二次风量用, 每台磨煤机入口配有风量测量装置, 每台磨煤机出口6 根一次风管道上分别装有1个可调缩孔, 二

11、次风采用热风再循环方式。风烟系统共配备 2 台静叶可调轴流式引风机、2 台轴流式送风机、2 台的离心式一次风机、2 台离心式密封风机和 6 台中速辊式磨煤机、6台电子称重皮带式给煤机。本锅炉机组采用大风箱配风形式, 每层风室的二次风可以实现远方调节, 三次风挡板可以通过远方控制实现旋流强度的调节。 该机组的风量控制系统采用 2 台各带 50%额定负荷的轴流式送风机, 控制其动叶开度大小来满足入炉风量要求。送风控制系统风量调节器的给定值为总风量指令, 测量值为总风量实时信号。当总风量的实测反馈信号与总风量指令出现偏差的时候, 经过风量调节器输出后作为2 台送风机动叶开度大小的共有指令。为了尽快地

12、满足负荷变化的要求, 并保持炉膛压力的稳定, 风量控制系统中设计有以总风量指令为前馈信号的加速校正信号通道。前馈信号和风量调节器输出的主信号在加法块中进行综合, 通过切换选择分别向A、B 送风机输出自动控制指令。为了使 2 台送风机能够带不同的负荷, 运行操作人员还可以通过送风机的手自动操作站设定1 个偏置值。本系统除了完成正常工况下的串级控制系统内回路调节作用外, 还设计有非正常工况时送风机动叶开度定向闭锁回路, 以及2 台送风机分别实现手动操作和手自动相互切换时实现无扰动的偏差平衡回路。 若是炉膛压力异常, 通过大限制块、小限制块以及切换块的限制功能来闭锁送风机动叶开度指令。例如,当炉膛压

13、力过低时, 切换块的输入端接至S2端, 即将切换块的输出值又送回到输入端, 从而将该时刻的信号保持并输入大选块中, 此时送风机动叶位置指令在输入实际值和保持值之间选择较大值输出,使控制系统只能增加风量而不是减少风量。同理,当炉膛压力过高时, 本闭锁回路逻辑让送风机动叶开度指令在输入实际值和保持值之间选择较小值输出, 使得控制系统只能减少风量而不能增加风量。送风机调节器输出的公共指令同时送到 A 送风机和B 送风机的动叶开度控制回路, 再分别与送风机偏置信号相加或相减, 该信号经过上、下限幅块后作为两台送风机各自的自动控制指令。由送风机的M/ A 操作站可以引出偏置信号A , 它经过速率限制块后

14、, 加至 2台送风机的动叶开度控制回路。需要指出的是, 该偏置信号对2 台送风机动叶指令的作用方向是相反的, 目的是为了在正常情况下能够调节2 台送风机的负荷平衡, 使2 台送风机的发动机电流相等。送风机偏置信号只能在2 台送风机动叶都在自动控制模式时才可以由运行操作人员进行手动改变。当2 台送风机处于手动工作方式时, 送风机的偏置跟踪回路切换到 S2 端, 使送风机调节器跟踪2台送风机动叶开度的平均值。该平均值减去 A、B 送风机操作站的手动输出信号, 即为手动方式与自动方式之间存在的偏差, 平均值加上该偏差值即等于 A 送风机的手动输出信号, 平均值减去该偏差值即为B 送风机的手动输出信号

15、。这种设置的偏差调节程序是为了保证2 台送风机在分别投入自动时能够实现无平衡、无扰动的切换过程。若1 台送风机动叶开度控制投入自动方式, 则送风调节进入自动方式。总风量 PID 调节器可以自动补偿送风机投自动的台数改变, 即在总风量PID 调节器中不必再考虑送风机自动投入台数变化所需的增益改变。2 台送风机之间控制指令信号的差别也由偏差平衡回路连续计算来实现自动跟踪, 为处于手动方式运行的另1 台送风机投入自动做好无扰切换的准备。图6送风机动叶定向闭锁回路2. 6轴流送风机的喘振控制 喘振是轴流风机运行中的一种特殊现象, 在进出口差压高而出口流量低的异常工况下易发生喘振。轴流风机发生喘振的原因

16、是风机出口压力很高而风量很小, 导致风机动叶部分或全部进入失速区。其主要表现为风量、出口风压、电机电流出现大幅度波动、剧烈振动和发出异常的噪声。喘振会引起风机动叶片断裂或机械部件损坏, 所以运行中一旦发现风机进入喘振区, 应立即调整风机动叶角度, 使风机运行点避开喘振区。风机喘振跟动叶角度有很大的关系, 动叶角度越小, 越容易发生喘振。由于运行人员误操作使送风系统的挡板调节不当或者空预器堵灰、暖风器、控制系统故障造成的挡板误动, 增大了锅炉风烟系统的阻力。 送风机的控制保护回路中, 通常可以采用2种方法来防止轴流风机发生喘振: 限制送风机动叶控制站的输出或动叶开度指令迫减。如图7所示,f 1

17、( x ) 为送风机入口风量与出口压力的函数关系,当送风机出口压力的升高与送风机入口风量不匹配时, 发出 / 接近喘振区0 的报警; f 2 ( x ) 为送风机入口风量与送风机动叶安全开度的函数关系, 由f 2 ( x ) 确定的送风机动叶安全开度与实际送风机动叶指令形成交叉限制, 当送风机发生喘振时, 送风机入口风量急剧下降, 交叉限制回路发生作用, 迫减送风机动叶指令, 并发出 / 喘振保护交叉限制0的报警。轴流风机提供了测量喘振工况的差压开关, 喘振探头及信号取样管安装不当时, 容易发生风机喘振误报警和误动作。图7 送风机控制保护2. 7送风控制系统存在问题的分析处理 (1)送风机动叶

18、控制方式跳出“ 自动” 送风机动叶气动执行机构定位器凸轮特性呈线性关系, 气动执行机构从 0 到 100%全行程动作时间仅7 s,而推动动叶的液压缸有一定的动作速率限制(动叶角度变化率等于小于2. 5 / s) , 风机动叶全行程 10 至55 至少需要18 s,由于送风机动叶气动执行机构的调节速度过快,使风机动叶实际动作无法很好地跟随气动执行机构。在较大幅度的系统扰动或变负荷工况下, 由于执行机构与动叶实际动作速度不匹配,使安装于风机动叶调节连杆上的位置开关检测到“ 过力矩” 而发出“ 风机动叶迟缓( FDFAN BLADE STU CK)” 信号,导致送风机动叶控制方式跳出“ 自动” ,

19、影响自动装置投运。若此时另一侧风机控制仍处于“ 自动” 方式, 极易引起该侧风机出力受阻而导致“ 风量限制保护” 动作或风机失速,送风控制系统即根据送风机风量保护曲线自动限制该侧风机的动叶开度,威胁机组的安全运行,严重时曾导致二次风量低而机组跳闸。为此, 在气动执行机构定位器输出至气缸的上、 下控制气管路上加装了限速节流孔板, 以匹配气动执行机构与动叶液压缸的动作速度。调整后测量气动执行机构的全行程动作时间为 20 s 左右,满足了工艺系统的要求。(2)风量测量值无规律大幅晃动的处理 二次风流量采用机翼型流量测量装置, 安装于空预器出口二次风道中;每台机组的A、 B 两侧各配置3台流量变送器。

20、 二期机组自投运以来, 先后多次出现了自动方式下二次风量测量值无规律大幅晃动, 最大可达 20%以上, 导致锅炉总风量和炉膛负压波动。 经试验,当送风控制切至手动方式时, 情况稍有好转, 炉膛负压控制稳定,但二次风量测量值仍有晃动。经反复分析查找各方面可能的原因无果。利用一次偶然的4 号机组停机机会,分别对二次风流量机翼型测量装置进行了检查,发现机翼型流量测量装置的取压孔均有不同程度的堵灰现象。 事后分析认为,机组经过长期运行,空预器波纹板内的积灰随二次风进入二次风道,容易将节流装置机翼上的风量取压孔堵塞; 另外燃烧器点火油枪经长期运行,少量油气通过空预器渗透到二次风道中, 油气易使灰尘粘附于

21、机翼型流量装置的风量取压孔上,也可能最终造成二次风量测量值晃动。为此,在每根取样管的出口与管子成 60 安装了仪用空气吹扫管, 进行定期吹灰,有效地解决了流量测量装置取压管的堵灰问题。(3)温度信号漂移引起送风机跳闸的分析处理 组温度信号漂移问题目前比较普遍, 当送风机因电动机线圈温度保护动作跳闸后,就地检查电动机线圈温度一次测量元件(热电偶的热电势 mV 值)正常, 但该信号由 DCS 系统的 TU 端子经信号隔离器输入至 INFI90 系统后,在OIS 操作员站上电动机线圈温度显示仍偏高。 经试验分析,由于接地或其它电磁干扰等原因可能使输入DCS 的温度信号经隔离器产生了电容性电荷积聚,引

22、起对应毫伏测量值偏移,造成温度信号漂移。将该温度mV 信号输入至 DCS 的T U 端子对地放电后重新恢复接线, OIS 操作员站上的温度显示即恢复正常。目前该问题具有一定的普遍性,尚未彻底解决,进一步的解决方案拟将低电平模拟量信号隔离器及其I/ O 模件更换为抗干扰性能较好的硬件。送风控制系统从就地执行机构、 测量仪表、 控制参数及控制逻辑等方面进行了不断改进和完善, 目前已具有良好的自动调节品质,并能满足机组安全稳定运行的需要。2. 8送风控制系统在火电厂中的应用 使燃料在炉膛中充分燃烧是送风量控制的主要任务,如图8所示。送风量控制系统为串级控制系统,主回路为氧量校正回路,用来修正燃料量与

23、风量的比例系数,副回路为风量控制回路,是以母管压力调节回路输出或燃料量作为设定值,以送风量经氧量修正后作为测量值。为了保证锅炉燃烧的安全性,在机组增减负荷时,保证有充足的送风量和一定的过量空气。在增加负荷时,锅炉负荷指令同时加到燃料控制系统和送风量控制系统。由于高选折器的作用,送风量随着锅炉负荷指令的增加而增加,而燃料量受到实际测量的风量经补偿及修正后的总风量的闭锁(低选折器),实际燃料量不会马上增加,这样就达到了增加负荷时先增风后增燃料量的目的。而在减负荷时,只有燃料量减少,送风量控制系统才开始动作。但当锅炉负荷较低时,为了保证锅炉能够安全燃烧,风量应维持在30%以上。 在实际的应用过程中,

24、为了保证燃料在炉膛中充分燃烧,送风量控制系统主要从以下几个方面来完善:a) 采用两台送风量测量装置(左、右),流量变送器的输出一般要经补偿及开方后送加法器相加,然后作为总风量,这样可以保证风量测量的准确性。b) 送风量控制系统设有保护系统,当炉膛压力高于一定值时,送风量控制系统闭锁,防止送风量继续增加;当炉膛压力低于一定值时,送风量控制系统闭锁,避免炉膛压力继续降低;而当总风量小于25%时,就触发MFT(主燃料跳闸)动作。c) 为了保证燃烧的安全和经济,采用氧量控制系统控制一定的过量空气,通过控制烟气含氧量就可达到控制过量空气系数的目的。氧量的校正系统采用单回路PID调节,其目的是保证氧量的测

25、量值与设定值保持一致。锅炉燃烧系统的需氧量的设定值应与锅炉的负荷成一定的函数关系,采用主蒸汽流量作为锅炉负荷。选用适当的函数转换可以保持氧量设定值与锅炉负荷的最佳关系,而在计算机控制系统中采用函数发生器实现上述关系。燃料控制系统中燃料量和送风量控制系统在升降负荷过程中,同步协调动作。氧量回路在回路中起着细调的作用。因此,氧量校正应该定得比较慢,以保证锅炉的经济燃烧。3 控制系统SAMA图以及逻辑图分析3. 1 SAMA图符号与逻辑图功能码说明 目前热控系统按功能给出的功能图,其控制框图的画法一般都采用国际标准画法,即SAMA图例。这种图例的特点是流程比较清楚,特别是对复杂回路画起来都比较容易。

26、SAMA图的输入输出关系及流程方向与控制组态方式比较接近,各控制算法有比较明确的标志。 常用的SAMA图例有四种,分别表示的含义如下:(1)图形框 表示测量或信号读出功能;(2)矩形框 表示自动信号处理,一般表示机架上所安装的组件的功能;(3)正菱形 表示手信处理,一般表示仪表盘上所安装的仪表的功能;(4)等腰梯形框 表示最终控制装置,如执行机构等;逻辑图中常用的功能码有三种,分别表示的含义如下:(1)逻辑或,表示当输入的任一条满足,输出为1,即执行输出;(2)逻辑与,表示当输入的所有条件都满足,输出为1,即执行输出(3)逻辑非,表示输出所执行的指令与输入的条件相反。-图7 送风控制系统3.

27、2 测量回路 总风量(TOTAL AIR FLOW)的测量由送风机A二次风流量测量经流量转换器所得信号和送风机B二次风流量测量经流量转换器所得信号与五台磨煤机(磨煤机A、磨煤机B、磨煤机C、磨煤机D、磨煤机E)一次风流量测量值经流量转换器的信号通过求和块求和所得。另外,防止信号坏质量影响信号的测量,系统设计了信号坏质量线路,如果信号坏质量就会通过坏质量块经过逻辑块或门送到总风量坏质量信号处。为了确保测量的准确性,送风机A与送风机B二次风流量测量采用两个测点,分别经平均值选折块通过开方块将信号送到求和块。而且,总风量应大于最低风量信号(MIN AIR FLOW一般设为30%),如果总风量小于最低

28、风量信号,系统设置了报警信号,并且系统还设计了用送风机A与送风机B的出口风温用除法块对二次风流量进行修正。3. 3空气流量指令形成回路 送风系统有三路,一路送入制粉系统、一路作一次风输粉、另一路作为二次风直接进入炉膛燃烧。每路有左、右两管,共装有六台机翼型测风装置,三路信号经过温度校正后相加,作为总风量测量值信号(TOTAL AIR FLOW)。 空气流量指令(AIR FLOW DEMAND)由热量信号(HEAT RELEASE)与锅炉主控指令(BOILER DMD)选大值,以保证风量始终富裕于燃料量。另外,为防止锅炉灭火,引入了最低风量信号(MIN AIR FLOW),由图7中定值块进行设定

29、。当锅炉主控指令与热量信号(间接代表燃料量)都小于最低风量信号(一般设定为30%)时,则大值选折块选折最低风量信号作为空气流量需求指令,以维持炉膛不灭火所需要的最低风量。为保证燃烧的经济性,控制系统引入了烟气含氧量(FLUE GAS OXYGEN)信号进行校正,图中实测烟气含氧量信号(最佳含氧量与锅炉负荷有关,一般负荷增加,最佳含氧量减少,负荷减少,最佳含氧量增加)比较,经比例积分调节块PI输出被一级压力经函数发生器修正后对风量指令进行修正。烟气含氧量采用。图9 送风流量之间串级调节回路3. 4送风机动叶控制回路 该系统增设了两台送风机(A、B)的防喘振调节回路。该回路由运算块,比例积分块及大

30、值选择块组成,送风机动叶控制设计为选择调节系统。 锅炉在正常负荷下,风机的工作点位于稳定工况区,这时风道阻力正常,防喘振调节器的输出小于送风调节器的输出。因此,大值选择块选择送风调节器的输出作为送风机动叶开度的控制指令。系统根据总风量测量值与空气流量指令的偏差进行比例积分调节,防喘振调节器处于挂起状态。 一旦锅炉负荷降低,送风量减少或运行中风道发生阻塞造成风量减少时,送风机出口压头增大,则风机有喘振发生的趋势。这时,防喘振调节器的输出大于送风调节器的输出,大值选择块选择防喘振调节器的输出作为送风机动叶的控制信号,迅速调整风机的动叶角度,使风机的工作点不越过临界点K,从而阻止了风机发生喘振的可能。 为了实现系统自动、手动的双向无扰切换。本系统设计了如下的一些跟踪回路: 当任意一台风机处于“自动”运行方式,则送风调节器即处在“自动”方式;只有当两台风机均处于手动方式时,送

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1