1、圆柱可以有无数个纵切面,每个纵切面都是长方形或正方形,长方形对边平行。侧面上可以作无数条高;在两底面之间只要量出垂直于底面的线段的长度都是圆柱体的高。3、认识圆柱侧面的特征:(1)圆柱的两个底面都与侧面相交,观察一下,两个底面与侧面相交的线是底面的什么?(2)侧面是一个曲面,如果沿着它的一条高剪开,再展开,你能想象出侧面会变成一个什么图形吗?(学生动手操作,演示展开图)(3)这个长方形的长、宽与圆柱有什么关系?(4)画一画、议一议:展开图可以是一个其它图形吗?如果不沿着高展开,侧面剪开可能是什么形状?4、结合板书组织学生回顾、议论,总结学到的知识。三、强化练习、巩固新知:1、第11页做一做2、
2、口答:(1)一张长方形纸,长30厘米,宽20厘米,如果把它围成圆柱状,围成后的圆柱侧面与长方形底有什么关系?这个圆柱底面周长和高各是多少?(2)一张正方形纸,边长20厘米,围成一个圆柱。这个圆柱底面周长和高各是多少厘米?四、课堂小结:本节课学了哪些知识,学会了什么,是怎样学的?五、作业:1、用硬纸做一个底面半径为2厘米,高5厘米的圆柱。2、作业本P4八、板书设计:圆 柱教学反思: 课前,老师已布置大家用学习材料做圆柱,所以同学们对圆柱的特点已基本掌握,也知道了圆柱和圆、长方形的关系,但圆柱的侧面展开后形成的长方形的长和圆柱底面圆的周长关系,有同学不是很理解,通过练习才慢慢明白过来。 第二课时圆
3、柱的表面积(教材第1314页的例3、例4及做一做)1、在初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。2、培养学生良好的空间观念和解决简单的实际问题的能力。3、通过实践操作,在学生理解圆柱侧面积和表面含义的同时,培养学生的理解能力和探索意识。掌握圆柱侧面积和表面积的计算方法。运用所学的知识解决简单的实际问题。圆柱、圆柱侧面的展开图、小黑板一、复习1、指名说出圆柱的特征。(1)一个圆形花池,直径是5米,周长是多少?(2)长方形的面积怎样计算?二、新课:1、圆柱的侧面积。(1)圆柱的侧面积,顾名思
4、义,也就是圆柱侧面的面积。(2)出示圆柱的展开图:这个展开后的长方形的面积和圆柱的侧面积有什么关系呢?(3)那么,圆柱的侧面积应该怎样计算呢?(圆柱的侧面积底面周长高)2、侧面积练习:练习二第5题(1)学生审题。(2)指名板演,其他学生做在练习本上。(3)小结:要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。3、理解圆柱表面积的含义。(1)让学生把自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?(2)圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。公式:圆柱的表
5、面积圆柱的侧面积底面积24、教学例4:(1)出示例4:学生读题,明确已知条件(2)求的是厨师帽所用的材料,需要注意些什么?(3)指定两名学生板演,其他学生独立进行计算。(注意:这道题使用的材料要比计算的结果多一些。因此,这里不能用四舍五入法取近似值。而要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。侧面积:3.1420281758.4(平方厘米) 底面积:(202)2314(平方厘米) 表面积:1758.43142072.42080(平方厘米)5、小结:在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟筒用铁皮只求一个侧面积;水桶用铁皮是侧面积加上
6、一个底面积;油桶用铁皮是侧面积加上两个底面积。求用料多少,一般采用进一法取值,以保证原材料够用。三、巩固练习:1、做第14页“做一做”。2. 练习二第6题。四、作业:作业本P5五、板书设计:圆柱的表面积圆柱的侧面积底面周长高侧面积:底面积:表面积: 圆柱的表面积大部分学生都知道,也会自己说出计算圆柱表面积的方法,但由于圆柱的表面积计算起来比较麻烦,所以同学们计算起来很慢,课堂效率不高;个别同学的计算正确率不高。第三课时圆柱表面积的练习(教材第1518页练习二剩下的习题)练习1、会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。一、复习:1、圆柱的侧面积怎么求?2、圆柱的表面积怎么求
7、?(圆柱的表面积圆柱的侧面积底面积2)3、练习二第14题:根据已知条件求出圆柱的侧面积和表面积。(第题已知圆柱的底面周长,对于求侧面积较有利。但在求底面积时,要先应用C2来求出圆柱的底面半径)二、实际应用:1、练习二第13题(1)复习长方体、正方体的表面积公式:长方体的表面积(长宽长高宽高)正方体的表面积棱长棱长6(2)学生独立完成,指名板演。2、练习二第7题(1)用圆柱教具演示,引导学生思考:前轮转动一周,压路面的面积是指什么?(2)学生独立完成,集体订正。3、练习二第9题(1)学生读题、理解题意:“抹水泥的部分”是指哪几个面?(2)指名板演,其他学生独立完成。4、练习二第16题(1)学生读
8、题理解题意后尝试独立解题。(2)集体评讲,理解:计算“制作中间的轴需要多大的硬纸板”,就是计算硬纸轴的侧面积,卫生纸的宽度就是硬纸板的高度。5、练习二第19题(1)学生小组讨论:可以漆色的面有哪些?(2)通过教具演示,使学生明白圆柱及长方体表面被遮住的部分刚好是圆柱的三个底面积。因此,计算油漆的面积就是计算长方体表面积与圆柱侧面积之和减去圆柱的一个底面积。(3)注意:将计算结果化成以平方米为单位的数,并根据实际情况保留近似数。三、作业:练习二第8、10、15、17、18及20题完成在作业本上。四、板书设计:高 圆柱表面积的计算大部分学生会算,但由于计算比较麻烦,所以计算的正确率不高,同学们计算
9、的速度也很慢。对只计算侧面和一个底面的圆柱、只计算侧面的圆柱,同学们侄不会错,但在个别同学在计算标准的圆柱时,会漏加一个底面的面积。第四课时圆柱表面积的练习小黑板、练习纸圆柱表面积练习题一、填空1、把圆柱体的侧面展开,得到一个(),它的()等于圆柱底面周长,()等于圆柱的高2、一个圆柱体,底面周长是94.2厘米,高是25厘米,它的侧面积是()平方厘米3、一个圆柱体,底面半径是2厘米,高是6厘米,它的侧面积是()平方厘米4、一个圆柱体的侧面积是12.56平方厘米,底面半径是2分米,它的高是()厘米5、把一张长8分米,宽5分米的白纸,围成一个圆柱形纸筒,这个纸筒的侧面积是()平方分米6、把一张边长
10、为5.5厘米的正方形白纸,围成一个圆柱形纸筒,这个纸筒的侧面积是()平方分米二、判断1、圆柱的侧面展开后一定是长方形()2、6立方厘米比5平方厘米显然要大()3、一个物体上、下两个面是相等的圆面,那么,它一定是圆柱形物体()4、把两张相同的长方形纸,分别卷成两个形状不同的圆柱筒,并装上两个底面,那么制的圆柱的高、侧面积、表面积一定相等()三、求下面各圆柱体的侧面积1、底面周长是6分米,高是3.5分米2、底面直径是2.5分米,高是4分米3、底面半径是3厘米,高是15厘米四、 判断1、圆柱体的表面积底面积2底面积高()2、圆柱体的表面积一定比它的侧面积大()3、圆柱体的高越长,它的侧面积就越大()
11、五、 选择题1、做一个无盖的圆柱体的水桶,需要的铁皮的面积是()侧面积一个底面积侧面积两个底面积(侧面积底面积)2、一个圆柱的底面直径是10厘米,高是4分米,它的侧面积是()平方厘米40012.56125.612563、圆柱的底面直径扩大2倍,高缩小到原来的 ,圆柱的侧面积是()扩大2倍缩小2倍不变作业本P6页六、板书设计:从练习来看,同学们基本掌握了圆柱表面积的计算方法,只有马奇缘、刘国强两人总会出现少算一个底面积的情况,但计算结果正确率仍不高,多数同学很粗心,应该多练习。第五课时圆柱体积计算公式的推导(教材第1920页的例5、做一做及练习三有关练习)1、通过用切割拼合的方法借助长方体的体积
12、公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积。2、初步学会用转化的数学思想和方法,解决实际问题的能力。3、渗透转化思想,培养学生的自主探索意识。掌握圆柱体积的计算公式。圆柱体积的计算公式的推导。圆柱的体积公式演示教具一、复习铺垫。1、拿出一个圆柱形物体,指名指出圆柱的底面、高、侧面、表面各是什么?圆柱有几个底面?有多少条高?圆柱的侧面积怎么求?2、长方体体积的计算公式。3、圆面积计算公式的推导。4、能否运用此方法,把圆柱的体积转化成我们学过的形体,推导出圆柱的体积计算公式呢?二、引导探究:1、教师出示一个圆柱体:这个圆柱的体积你们会算吗?2、提示:(1)以前学过的长方体和正方体的
13、体积,对我们研究圆柱体体积有帮助吗?(2)你觉得圆柱的体积和什么有关系?你能猜一猜圆柱的体积怎样计算吗?3、小组合作交流:怎样将圆柱体转化成一个长方体呢?4、小组代表汇报:5、演示操作:(1)请一名学生演示用切插拼的方法把圆柱体转化成长方体。其他学生模仿操作。(2)这是一个标准的长方体吗?为什么?如果分割得份数越多,你会有什么发现?6、组织讨论:(1)圆柱体转化成一个长方体后,什么变了,什么没有变?你有什么发现?(2)根据学生的观察、分析、推想,老师完成板书:长方体的体积=底面积 圆柱的体积=底面积(3)追问:圆柱体的体积计算公式我们是怎样推导出来的?7、小结:要想求出一个圆柱的体积,需要知道
14、什么条件?8、学生自学第19页,用字母表示公式:v=sh9、书第20页做一做10、如果已知圆柱底面半径r和高h,圆柱体积的计算公式是怎样的?(Vr2h)1、第21页练习三的第1题2、练习三的第2题这两道题分别是已知底面半径(或直径)和高,求圆柱体积的习题要求学生审题后,知道要先求出底面积,再求圆柱的体积。3、一个圆柱形橡皮,底面直径上2厘米,长4厘米。它的体积是多少?这节课里你学到了哪些知识?根据学生回答教师总结。作业本P7圆柱的体积圆柱的体积底面积VSh或Vr2h 由于缺少学具,只能由教师演示圆柱转化为长方体的过程,学生们能由圆转化为长方形联想到把圆柱转化为长方体,我想如果有学具,他们应该会
15、操作。第六课时圆柱体积计算公式的应用(教材第2021页的例6及练习三有关练习)1、使学生掌握圆柱体积的计算公式,并能运用公式解决一些简单的实际问题。 2、渗透转化思想,培养学生的自主探索意识。一个圆柱形物体,一个圆柱形杯子。1、口算。45十037 0258 58十29729 6148 2、我们是怎样得到圆柱体积的计算公式的?圆柱体积的计算公式是什么?指名学生叙述一下圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的。圆柱体积的计算公式是“底面积高”,即:VSh1、圆柱体积公式的另一种形式:如果已知圆柱底面的半径r和高H,圆柱体积的计算公式应该怎样表达?根据底面积S与半
16、径r的关系可以知道: Srr,所以圆柱体积的计算公式也可以写成:Vr2h。2、教学例6:(1)教师提出下面问题帮助学生理解题意:这道题已知什么?求什么?求水桶的容积是什么意思?根据什么公式?要使学生理解水桶的容积就是水桶能容纳物体的体积,求水桶的容积就是求这个圆柱形水桶内部的体积。所以可以根据圆柱体积的计算公式来计算。要求水桶的容积应该先求什么?水桶的底面积在题中没有直接给出,因此要先求水桶的底面积,再求水桶的容积。水桶的底面积应该怎样求?(2)请一名同学板演,其余同学在作业本上做。(3)校对:请板演的同学讲解自己的解题方法,说一说在做这道题的过程中遇到了什么问题,是怎样解决的?(4)教师归纳
17、学生所用的解题方法。强调在解题的过程中要注意单位统一。1、我班同学用硬纸板制作了一个圆柱形笔筒,内底面半径是3厘米,高10厘米。这个笔筒的容积是多少立方厘米?2、练习三的第3题:可以装多少水是求圆柱的什么?3、练习三的第5题:这道题已知什么?应该怎样求?引导学生从圆柱的体积计算公式入手,可以直接用算术方法计算,也可以列方程来解答。作业本P8 杯子的底面积:(82)23.14423.141650.24(cm2) 杯子的容积:50.2410502.4(cm3)502.4(ml)有了圆柱体积的计算公式,大多数学生也掌握了计算方法,能非常快地计算圆柱的体积。但个别同学出现单位名称写错,主要是体积单位用
18、“平方”,经教师提醒后,又有同学在计算圆柱的底面积时,单位名称也用“立方”了。第七课时圆柱体积的练习(教材第2122页练习三的有关习题)1、使学生能够运用公式正确地计算圆柱的体积和容积。2、初步学会用转化的数学思想和方法解决实际问题。灵活应用圆柱的体积公式解决实际问题。小黑板1、平面图形:我们已经学过的平面图形有哪些?它们各自的面积计算公式是什么?指名学生分别回答,教师板书:长方形的面积=ab正方形的面积=a2平行四边形的面积=ah梯形的面积=(a+b)h圆的面积=r22、立体图形:我们已经学过的立体图形有哪些?它们的表面积和体积怎样求?出示长方体、正方体和圆柱的模型,引导学生通过观察回忆它们
19、表面积和体积的计算公式:这三个立体图形的体积公式能否统一成一个呢? (底面积 3、独立完成练习三第6题,并指名板演。二、解决实际问题1、练习三第7题。学生思考:要求粮囤所能装的玉米的重量,需先知道什么?然后独立完成。2、练习三第5题。(1)指导学生变换公式:因为VSh,所以hVS。也可以列方程解答。(2)学生选择喜爱的方法解答这道题目。3、练习三第8题。(1)学生读题后,指名说说对题意的理解:求减少的土方石就是求月亮门所占的空间,而月亮门所占的空间是一个底面直径为2米,高为0.25米的圆柱。(2)在充分理解题意后学生独立完成,集体订正。4、练习三第9、10题(1)学生独立审题,完成9、10两题
20、。(2)评讲第9题:要怎样才能判断出800ml的果汁够倒三杯吗?必须先求出什么?怎么求?(需先求出圆柱形玻璃杯的容积,用公式VSh)(3)指名说说解答第10题的思路:根据两个圆柱的底面积相等这一条件,先求出其中一个圆柱的底面积。利用这个底面积再求出另一个圆柱的体积。三、课堂小结:作业本P9页练习三底面积 在分析题意后再练习,大部分学生做得很好,但计算错误的同学仍很多。看来,提高计算的正确率是非常紧迫的任务。2、圆 锥圆锥的认识(教材第3344页的例1、做一做及练习四有关习题)1、使学生认识圆锥,掌握圆锥的特征及各部分名称。2、使学生会看圆锥的平面图,并能从旋转的角度认识圆锥。3、通过观察、设计
21、和制作圆锥体模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。掌握圆锥的特征。正确理解圆锥的组成。圆锥的模型、圆锥形的实物、圆锥形物体、一块平板、一把直尺。一、导入新课1.师:我们已经学习了圆柱的有关知识,谁能告诉老师圆柱有什么特征?2.揭示课题:出示圆锥教具,问:你知道这个物体是什么形状的吗?(圆锥体)今天我们就来认识这种新的立体图形圆锥体。圆锥体可以简称圆锥。(板书课题:圆锥的认识)二、观察模型,把握特征 1、在日常生活中你们见过哪些物体的形状是圆锥体的?2、出示课本的三幅圆锥形实物图,并抽象出圆锥体的几何图形。3、今天我们来认识圆锥。圆锥各部分叫什么名称、圆锥又有何特征呢
22、?让学生拿出圆锥体的实物,小组合作,探究圆锥的特征。4、小组汇报,教师板书圆锥各部分的名称及特征:(1)圆锥有一个曲面、一个顶点、一个面是圆的。(2)圆锥有一个顶点,它的底面是一个圆(在图上标出顶点,底面及其圆心O)(3)圆锥有一个曲面,圆锥的这个曲面叫做侧面。(在图上标出侧面)三、动手实践,学会测高:1、圆锥有没有高?你们认为圆锥的高在哪?(让学生在实物或教具上指出圆锥的高,针对“从圆锥的顶点到底面圆心的距离是圆锥的高”和“从圆锥的顶点到底面圆周上的一点的距离是圆锥的高”两种说法,让学生展开辩论,明确圆锥的高的含义,并在图中标出高。2、引导学生讨论:圆锥有几条高?(一条高)3、同学们知道了什
23、么是圆锥的高,如果要量出圆锥形物体的高你会吗? 有学生说会,请他做。如果没有学生会做,教师进一步启发学生。4、总结测量圆锥高的方法:第一、把圆锥的底面放平;第二、把一个直角三角板同圆锥竖直放在同一平面上;第三、把另一个直角三角板一条直角边同竖着三角板的一条直边直角边重合,另一条直角边靠近圆锥顶点,即可量出。5、学生测量一个圆锥的高。圆锥侧面的展开图(1)学生猜想圆锥的侧面展开后会是什么图形呢?四、圆锥侧面的展开图:(1)圆柱的侧面展开是一个形状?那么圆锥的侧面展开又是一个什么形状呢?(2)实验来得出圆锥的侧面展开后是一个扇形。(3)猜测:一个长方形通过旋转,可以形成一个圆柱。那么将三角形制片绕
24、着一条直角边旋转,会形成什么形状?(4)通过操作,使学生发现转动出来的是圆锥,并从旋转的角度认识圆锥。五、巩固新知,畅谈感受 通过本节的学习,你获得什么新的收获,有什么感受?六、作业:1、用圆规、剪刀,硬纸板按教材图样做一个圆锥。2、作业本P10页七、板书设计:圆 锥 同学们虽然会说圆锥的高,但具体测量时,很多同学找不到底面的圆心,只会像圆柱一样从圆锥的顶点量到底边,经教师演示,仍有同学不会测量。因为圆锥的很多地方和圆柱很相似,所以很多同学能用学习圆柱的方法学习圆锥,很不错。第二课时圆锥的体积(教材第2526页例2、例3)1、使学生理解求圆锥体积的计算公式,会运用计算公式计算体积、容积,解决简单的实际问题。2、培养学生观察、比较、概括表达、动手操作的能力,渗透转化的数学思想。3、通过教学,使学生体验数学活动充满着探索,感受
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1