1、然后,打开Weka的Exporler,点击Open file按钮,打开刚才得到的“total_data”文件,点击“save”按钮,在弹出的对话框中,文件名输入“total_data”,文件类型选择“Arff data files(*.arff)”,这样得到的数据文件为“total_data.arff”。2.2如何建立数据训练集,校验集和测试集数据的预处理过程中,为了在训练模型、评价模型和使用模型对数据进行预测能保证一致性和完整性,首先要把movie_given.xslx和test.xslx合并在一起,因为在生成arff文件的时候,可能会出现属性值不一样的情况,否则将为后来的测试过程带来麻烦。
2、通过统计数据信息,发现带有类标号的数据一共有100行,为了避免数据的过度拟合,必须把数据训练集和校验集分开,目前的拆分策略是各50行。类标号为female的数据有21条,而类标号为male的数据有79条,这样目前遇到的问题是,究竟如何处理仅有的21条female数据?为了能在训练分类模型时有更全面的信息,所以决定把包含21条female类标号数据和29条male类标号数据作为模型训练数据集,而剩下的另49条类标号类male的数据将全部用于校验数据集,这是因为在校验的时候,两种类标号的数据的作用区别不大,而在训练数据模型时,则更需要更全面的信息,特别是不同类标号的数据的合理比例对训练模型的质量有
3、较大的影响。2.3预处理具体步骤第一步:合并movie_given.xlsx和test.xlsx,保存为total_data.xlsx;第二步:在total_data.xlsx中删除多余的ID列信息;第三步:在excel中打开“total_data.xlsx”,选择菜单文件-另存为,在弹出的对话框中,文件名输入“total_data”,保存类型选择“CSV(逗号分隔)”;第四步:使用UltraEdit工具把total_data.csv中的数据缺失部分补上全局常量?; 第五步:打开Weka的Exporler,点击Open file按钮,打开刚才得到的“total_data.csv”文件,点击“s
4、ave”按钮,在弹出的对话框中,文件名输入“total_data”,文件类型选择“Arff data files(*.arff)”,这样得到的数据文件为“total_data.arff”。 第六步:从total_data.arff文件里面剪切所有没有分类标号的数据作为预测数据集(test.arff),共26项。 第七步:把剩下含有类标号数据的total_data.arff文件复制一份,作为总的训练数据集。文件名称为build_model.arff。 第八步:从total_data.arff文件中剩下的数据里面选取所有分类标号为male的49行数据作为校验数据集(validate_data.ar
5、ff)。 第九步:从把剩下的total_data.arff文件改名为train_data.arff。3. 实验过程及结果截图3.1决策树分类用“Explorer”打开刚才得到的“train-data.arff”,并切换到“Class”。点“Choose”按钮选择“tree (weka.classifiers.trees.j48)”,这是WEKA中实现的决策树算法。选择Cross-Validatioin folds=10,然后点击“start”按钮:训练数据集训练决策树得出的结果使用不同配置训练参数,得到的实验数据:配置不同的叶子节点的实例个数实例数/叶节点23456准确率54%60%56%结果
6、分析:使用决策树时,每个叶子节点最优的实例个数为3。校验数据集校验决策树得出的结果初步结果分析:使用决策树进行分类,对于已知的49个类标号为male的数据都进行了准确的分类,并且达到100%;虽然是个很好的数据,但是完美背后隐藏了缺陷,是以对female类的低准确率作为代价的,因为这样会说明该分类器很有可能偏向male类。3.2 K最近邻算法分类点“Choose”按钮选择“laze-ibk”,这是WEKA中实现的决策树算法。训练数据集训练KNN得出的结果K值17891052%58%68%62%使用KNN算法分类时,K最优值为8。校验数据集校验KNN得出的结果对使用k=8训练出来的分类模型进行校
7、验的结果,准确率达到77.6%,算是一个比较合理的分类结果。3.3 朴素贝叶斯分类点“Choose”按钮选择“bayes”,这是WEKA中实现的决策树算法。训练数据集训练Nave Bayes得出的结果校验数据集校验Na评价结果中准确率仅仅达到59.1%,结果不是很让人满意。3.4 三类分类方法的校验结果比较决策树K最近邻朴素贝叶斯校验准确率100%77.55%59.18%训练混淆矩阵校验标准误差0.420.46540.5918比较结果分析: 根据上述数据,虽然决策树有最高的完美的准确率和相对较好的标准误差,但是这种完美的背后,很有可能是以类标号female的较大错误率作为代价,这点可以从训练混
8、淆矩阵中得到印证;而朴素贝叶斯分类算法的准确率相对较低,而标准误差也较高,综合评价可以得知,当前最好的分类算法是KNN算法,并且它是最优设置参数为k=8。3.5 训练最优模型 使用预处理中的buildmodel_data.arff数据文件训练分类模型,算法为k=8的KNN。数据集训练KNN得出的结果使用最终模型对测试集进行预测结果4.三种算法在进行测试的性能比较 4.1实验结果决策树的测试结果:KNN测试结果:朴素贝叶斯测试结果:比较分析结论: 性能分析应该包括两个部分,一个部分是测试速度,另一个部分是测试的质量。由于本次使用所使用的数据量太少,在测试速度的对比上相差太少,无法进行准确的分析。而在测试质量上,可以从上述数据中得到,决策树依然是由于它对与male类标号的偏爱,导致质量的降低;而KNN与朴素贝叶斯相比,KNN具有较高的准确率,从性能角度上讲,KNN算法略胜一筹。 5.实验总结本次实验进行比较顺利,使我对如何在Weka中进行分类分析有了更深刻的了解,对Weka中进行分类分析的KNN算法,朴素贝叶斯算法和决策树算法都有了进一步的理解,同时也深刻体会到数据预处理对于数据挖掘的重要性。
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1