1、1 -3 样品前处理准确称取试样0.1 g,精确至0.000 1 g,置于钳:t甘竭中,加入0.6 g偏硼酸锂,混 匀,盖上钳盖。将钳圮竭置于高温炉中,将炉温逐渐升至950E,熔融10 min,取 出,冷却。用水冲洗钳圮竭外壁,将钳圮竭及钳盖置于300 mL烧杯中,加50 mL 硝酸(1+9),低温加热浸出熔块,用水洗出钳:t甘甥及钳盖,冷却至室温。将试液 移入100 mL容量瓶中,用水稀释至刻度,混匀,待用。2方法的适用性本标准方法适用于石灰石和白云石中钙、镁、硅、铝、铁、猛和磷含量的测定。由于石灰石和白云石在钙、镁、硅三个元素含量的差异较大,如石灰石中钙含量 在30%以上,镁含量多小于10
2、%,而白云石中的钙含量则多在20%左右,镁含量 多大于10%,因此需要根据样品中各元素的含量选择制定校准工作曲线。本标准方法采用将试液进行一定的稀释,用于测定样品中高浓度的钙、镁或硅的含量。3样品前处理条件的选择3.1前处理方式的选择 本标准方法旨在于建立对石灰石和白云石中钙、镁、硅、铝、 铁、镒和磷含量的测定方法,目前GB/T 3286系列标准中涉及混合溶剂(无水碳酸 钠+硼酸)、盐酸+氢氟酸 这两种处理方法,而参考文献中对石灰石的前处 理方式除上述方法外,还涉及偏硼酸锂熔融法 、氢氟酸+硝酸+高氯酸酸溶法 、无水碳酸钾+硼砂融融法,磷酸+硝酸微波消解法巧6】o其中酸溶法均需使 用氢氟酸,这
3、将导致硅元素的损失,无法对硅进行准确定量;无水碳酸钠+硼酸或无 水碳酸钾+硼砂由于所需熔剂量较大,导致试液中盐浓度较高,不稀释直接进样可能导致火焰 不稳定,甚至熄灭,无法进行测量,若对溶液进行稀释,除含量较高的钙、镁可以准 确定量外,其他含量较低的元素则无法准确测量。方法最终选用偏硼酸锂作为熔 剂,因其使用的熔剂量较少,且无背景干扰,适用于本方法的检测要求。3.2试样量的选择结合ICP-AES仪器对石灰石、白云石中钙、镁、硅、铝、铁、猛和磷各元素的检测限及 定量限,在满足分析灵敏度的前提下,通过减少熔剂用量而降低背景响应。试验表明,0.1 g 的称样量已经能够达到各元素的检测灵敏度要求。最终选
4、择0.1 g为试样量。3.3熔剂量的选择试验了偏硼酸锂用量分别为0.4 g、0.6 g、0.8 g和10 g,试验表明,当偏硼酸锂用量为 0.4 g时,部分样品未溶解完全,试液含少许白色絮状物质,当加大熔剂量至0.6 g时,样品 即能获得完全溶解的效果,当熔剂量继续增大时,样品中各元素含量的测定值没有明显区 别。最终选择偏硼酸锂的用量为 0.6 g。4分析条件的优化4.1分析谱线的选择分析波长选择的基本原则是尽可能地选择灵敏度高而干扰少的分析线测定。首先制备了 石灰石和白云石样品,对各元素的多条谱线进行峰形扫描,发现样品背景对各分析谱线无影 响。考虑杂质含量较低,因此选择检测限较低的谱线作为分
5、析谱线。通过扫描试样和标准溶 液的峰形图,发现两者的背景响应值存在差异,为确保定量结果准确,采用离峰单点校正方 式。选定的分析谱线及扣背景情况参见表1。表1兀素参考分析波长丿兀索参考分析波长/nmKI背景点/nmCa317.933317.950Mg279.806279.826Si251.611251.629Al396.152396.170Fe259.940259.957Mn257.610257.628P213.618213.6374.2分析参数的优化4.2.1高频功率由于高频功率的变化会导致等离子体温度、电子密度及发射强度的空间分布发生变化,且对不同元素及不同谱线的影响程度不同。在 1 000
6、1 300 W范围 内进行了高频功率优化试验,以获得较低背景等效浓度(BEC )为参考指标对高频功能进行 选择。最终选择1100W为高频功率。422工作气体流量根据ICP-AES的工作原理,炬管内可用三股气流:载气、辅助气和等离子 体冷却气。试 验表明,当提高冷却气流量和载气流量,各元素的检测灵敏度未得到提高,因此,最终选择 冷却气流量:12 L/min,辅助气流量:0 L/min,载气流 量:0.2 L/min。4.3检出限和定量限采用“基于响应的标准偏差和斜率的检出限确定方法” 和“基于响应的标准偏差和斜率的定量限确定方法”计算得出方法的检出限和定量限。首先根据方法建立校准工作曲线,得出各
7、元素校准曲线的斜率m,同时制备6个空白样 品,分别测定空白样品的光谱强度响应值,计算响应标准偏差根据公式(D和公式(2),分别计算得出方法的检出限和定量限,结果见表2。( 1)LOQ严m ( 2)表2各元素检出限和定量限系列号光谱强度空白115248.8894140.4446033.5569190.11135443.5563492.8891438.778空白215701.1113387.3337903.2222484.84442663.3331544.2224348.444空白315852.2223924.8898048.11110177.11133505.5562226.5564187.55
8、6空白417765.5563951.4449564.7784582.77829487.7784896.8892639.111空白513834.4443697.3339076.8892991.55645940.0001703.5562899.556空白616632.2223693.3337978.2222673.77843400.0003654.7781354.889(T7211.371774.013799.885288.5316191.061619.042188.20m7214858212553934749548708211032526486446LOD(IB/mL)0.0330.0710.2
9、30.0610.00520.015LOQ(IH/mL)0.100.220.700.710.190.0160.0454.4校准与线性441校准工作曲线按照方法配制一系列校准曲线溶液(共6个实验点),各元素各实验点的浓度如表3所示。表3校准曲线系列溶液中各元素浓度 单位:卩g/mL10.0021.000.0233.002.000.200.0545.000.3058.004.000.400.15610.000.50按照浓度从低到高的顺序,依次测定各元素的光谱强度,各个实验点均重复测量3次, 取平均值,该步骤从仪器操作软件上直接获得。以元素浓度为横坐标,光谱强度为纵坐标,用最小二乘法进行线性回归,得出
10、校准工作 曲线,见表4。表4各元素校准工作曲线丿元糸校准工作曲线线性系数R2Ca ( 317.933 nm)1 = 721 485* C + 106 7450.999 6Mg (279.806 nm)I = 82 125*0 + 59390.999 4Si (251.611 nm)I = 53 934* C + 679.60.999 9Al (396.152 nm)I = 74 954* C + 3 9610.999 8Fe (259.940 nm)I = 870 821* C-21 1050.999 1Mn (257.610 nm)I = 1 032 526* C + 3 6070.999
11、7注:I为歹P( 213.618 nm)= 486 446* C -3 331牡谱强度,c为浓度。442基质效应按方法制备实际试样,测定光谱强度A 从校准曲线上得出浓度x。向实际试样加入一 定量各元素标准溶液S,再进行测试,得到光谱强度B,从校准曲线上得出浓度为y。按公式 (3 )计算出各元素的q值,结果见表5。Sq= ,”,”,”,( 3)y-x表5各元素基质效应丿元素x (卩 g/mLy (卩 g/mLS (卩 g/mL)q2.1975.1453.01.017Mg ( 279.806 nm)1.2243.1332.01.0480.2412.1861.0281.8353.8071.0141.
12、2813.1121.092Mn f 257.610 nm)0.0930.2910.21.010P (213.618 nm)0.0120.0601.042由表5数据结果可见,各元素的均接近1,表明不存在基质效应的影响,可以直接采用外标法进行定量。4.5正确度采用本方法测试了白云石、石灰石有证标准物质中钙、镁、硅、铝、铁、猛、磷的含表6正确度试验 单位:%标准物质编号GBW 07214a测定值39.270.130.1000.0550.00310.0009标准值39.510.170.1030.0490.00390.0011YSBC20.6312.612.410.1610.1160.00710.001
13、628724-9320.8512.472.430.1640.1470.00850.002336.691.840.6050.1830.06070.00240.001528705-9337.041.900.6300.1780.07560.00330.002039.230.140.1080.0480.001214770-964.6重复性精密度制备一组带基质样品(n=6),添加各元素浓度至1、15和2倍定量限,分 析测定样品,得出总体平均值和相对标准偏差 RSDr,结果见表7。表9重复性精密度元素加入量(卩 g/mL)测定值(%)平均值(%)SrjRSDr37.8438.5732.5739.9241.
14、9738.8039.6135.5132.6139.5942.1038.7037.903.220.08541.0535.3431.3138.6040.7237.380.110.120.330.1210.01020.0840.440.090.080.1050.0880.01150.070.0340.0380.0290.0360.0310.0320.0230.0390.0300.00600.0280.0470.0530.0430.0410.0400.030.0440.0370.0420.00480.040.00340.00360.00270.00280.00250.00290.00320.00260
15、.00050.180.00210.00180.00140.00100.075-0.00070.00070.00080.00060.560.00174.7精密度试验本标准方法作为化学检测方法验证程序(试行)的验证试点项目,由化学金专业委秘书处选择协同实验室开展精密度试验,按GB/T 6379.2计算精密度。5参考文献1GB/T 3286.1-1998石灰石、白云石化学分析方法氧化钙量和氧化镁量的测定S.2谢华林.电感耦合等离子体原子发射光谱法测定石灰石中多元素J.冶金分析,2005,25(6) : 67-69.3张扬祖离子交换电感耦合等离子体发射光谱法测定石灰石中的微量磷 J.分析科学学报,1993,9(3) : 35-38.4贾林ICP-AES法在分析白云石、石灰石中SiO2,CaO,MgO的应用J.冶金分析,2004,24 : 125-127. 杜米芳,任红灿,岑治宝,等微波消解电感耦合等离子体发射光谱法同时测定白云石中铁铝钙镁钠硫J.岩矿测试、2006,25(3) : 276-278.杜米芳微波消解电感耦合等离子体发射光谱法同时测定石灰石中铁铝钙镁钾钠钛冶金分J.析,2008,28(9) : 30-33.
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1