ImageVerifierCode 换一换
格式:DOCX , 页数:4 ,大小:19.80KB ,
资源ID:20715902      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/20715902.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(第二十一章核酸的降解和核苷酸代谢文档格式.docx)为本站会员(b****5)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

第二十一章核酸的降解和核苷酸代谢文档格式.docx

1、 根据酶的作用方式分: 内切酶、外切酶。 1、 核糖核酸酶 只水解 RNA 磷酸二酯键的酶(RNase),不同的 RNase 专一性不同。 牛胰核糖核酸酶(RNaseI),作用位点是嘧啶核苷-3-磷酸与其它核苷酸间的连接键。 核糖核酸酶 T1(RNaseT1),作用位点是 3 -鸟苷酸与其它核苷酸的 5-OH 间的键。 - 1 - 2019 年 王镜岩版生物化学考研参考笔记 - 2 - 安雨(整理) 2、 脱氧核糖核酸酶 只能水解DNA磷酸二酯键的酶。 DNase牛胰脱氧核糖核酸酶(DNaseI)可切割双链和单链 DNA。 产物是以 5-磷酸为末端的寡核苷酸。 牛胰脱氧核糖核酸酶(DNase)

2、,降解产物为 3-磷酸为末端的寡核苷酸。 限制性核酸内切酶: 细菌体内能识别并水解外源双源 DNA 的核酸内切酶,产生 3-OH 和 5-P。 图 Pst切割后,形成 3-OH 单链粘性末端。 EcoR切割后,形成 5-P 单链粘性末端。 3、 非特异性核酸酶 既可水解 RNA,又可水解 DNA 磷酸二酯键的核酸酶。 小球菌核酸酶是内切酶,可作用于 RNA 或变性的 DNA,产生 3-核苷酸或寡核苷酸。 蛇毒磷酸二酯酶和牛脾磷酸二脂酶属于外切酶。 蛇毒磷酸二酯酶能从 RNA 或 DNA 链的游离的 3-OH 逐个水解,生成5-核苷酸。 牛脾磷酸二脂酶从游离的 5-OH 开始逐个水解,生成 3核

3、苷酸。 二、 核苷酸的降解 1、 核苷酸酶 (磷酸单脂酶) 水解核苷酸,产生核苷和磷酸。 非特异性磷酸单酯酶: 不论磷酸基在戊糖的 2、3、5,都能水解下来。 特异性磷酸单酯酶: 只能水解 3核苷酸或 5核苷酸(3核苷酸酶、5核苷酸酶) 2、 核苷酶 两种: 核苷磷酸化酶: 广泛存在,反应可逆。 - 2 - 2019 年 王镜岩版生物化学考研参考笔记 - 3 - 安雨(整理) 三、 嘌呤碱的分解 P301 图 18-2 嘌呤碱的分解 首先在各种脱氨酶的作用下水解脱氨,脱氨反应可发生在嘌呤碱、核苷及核苷酸水平上。 P 299 反应式 不同种类的生物分解嘌呤碱的能力不同,因此,终产物也不同。 排尿

4、酸动物: 灵长类、鸟类、昆虫、排尿酸爬虫类 排尿囊素动物: 哺乳动物(灵长类除外)、腹足类 排尿囊酸动物: 硬骨鱼类 排尿素动物: 大多数鱼类、两栖类 某些低等动物能将尿素进一步分解成 NH3 和 CO2 排出。 植物分解嘌呤的途径与动物相似,产生各种中间产物(尿囊素、尿囊酸、尿素、NH3)。 微生物分解嘌呤类物质,生成 NH3、CO2 及有机酸(甲酸、乙酸、乳酸、等)。 四、 嘧啶碱的分解 P302 图 18-3 嘧啶碱的分解 人和某些动物体内脱氨基过程有的发生在核苷或核苷酸上。 脱下的NH3 可进一步转化成尿素排出。 第二节 嘌呤核苷酸的合成 一、 从头合成 由 5-磷酸核糖-1-焦磷酸(

5、5-PRPP)开始,先合成次黄嘌呤核苷酸,然后由次黄嘌呤核苷酸(IMP)转化为腺嘌呤核苷酸和鸟嘌呤核苷酸。 嘌呤环合成的前体: CO2 、甲酸盐、Gln、Asp、Gly P303 图 18-4 嘌呤环的元素来源及掺入顺序 A. Gln 提供-NH2: N 9 B. Gly: C4、C5、N7 C. 5.10-甲川 FHFA: C8 D. Gln 提供-NH2: N3 闭环 E CO2: C 6 - 3 - 2019 年 王镜岩版生物化学考研参考笔记 - 4 - 安雨(整理) F. Asp 提供-NH2: N 1 G 10-甲酰 THFA: C 2 1、 次黄嘌呤核苷酸的合成(IMP) P306

6、 图 18-5 (1)、 磷酸核糖焦磷酸转酰胺酶(转氨) 5-磷酸核糖焦磷酸 + Gln 5-磷酸核糖胺 + Glu + ppi 使原来-构型的核糖转化成构型 (2)、 甘氨酰胺核苷酸合成酶 5-磷酸核糖胺+Gly+ATP 甘氨酰胺核苷酸+ADP+Pi (3)、 甘氨酰胺核苷酸转甲酰基酶 甘氨酰胺核苷酸 + N 5 N 10-甲川 FH4 + H2O 甲酰甘氨酰胺核苷酸 + FH4 甲川基可由甲酸或氨基酸供给。 (4)、 甲酰甘氨脒核苷酸合成酶 甲酰甘氨酰胺核苷酸 + Gln + ATP + H2O 甲酰甘氨脒核苷酸 + Glu + ADP + pi 此步反应受重氮丝氨酸和 6-重氮-5-氧-

7、正亮氨酸不可逆抑制,这两种抗菌素与 Gln 有类似结构。 P 304 结构式: 重氮丝氨酸、6-重氮-5-氧-正亮氨酸 (5)、 氨基咪唑核苷酸合成酶 甲酰甘氨脒核苷酸 + ATP 5-氨基咪唑核苷酸 + ADP + Pi (1)(5)第一阶段,合成第一个环 (6)、 氨基咪唑核苷酸羧化酶 5-氨基咪唑核苷酸+CO2 5-氨基咪唑-4 羧酸核苷酸 - 4 - 2019 年 王镜岩版生物化学考研参考笔记 - 5 - 安雨(整理) (7)、 氨基咪唑琥珀基氨甲酰核苷酸合成酶 5-氨基咪唑-4-羧酸核苷酸+Asp+ATP 5-氨基咪唑 4-(N-琥珀基)氨甲酰核苷酸 (8)、 腺苷酸琥珀酸裂解酶 5

8、-氨基咪唑-4-(N-琥珀基)氨甲酰核苷酸 5-氨基咪唑-4-氨甲酰核苷酸+延胡索酸 (9)、 氨基咪唑氨甲酰核苷酸转甲酰基酶 5-氨基咪唑-4-氨甲酰核苷酸+N10-甲酰 FH4 5-甲酰胺基咪唑-4-氨甲酰核苷酸+FH4 (10)、 次黄嘌呤核苷酸环水解酶 5-甲酰胺基咪唑-4-氨甲酰核苷酸 次黄嘌呤核苷酸+H2O 总反应式: 5-磷酸核糖 + CO2 + 甲川 THFA + 甲酰 THFA + 2Gln + Gly + Asp + 5ATP IMP + 2THFA + 2Glu + 延胡索酸 + 4ADP + 1AMP + 4Pi + PPi 2、 腺嘌呤核苷酸的合成(AMP) P306

9、 图 18-5 从头合成: CO2 、2 个甲酸盐、2 个 Gln、1 个 Gly、 (1+1)个 Asp、 (6+1)个 ATP,产生 2 个 Glu、(1+1)个延胡索酸。 Asp 的结构类似物羽田杀菌素,可强烈抑制腺苷酸琥珀酸合成酶的活性,阻止 AMP 生成。 羽田杀菌素: N-羟基-N-甲酰-Gly (P307) 3、 P307 结构式) - 5 - 2019 年 王镜岩版生物化学考研参考笔记 - 6 - 安雨(整理) 4、 AMP、GMP 生物合成的调节 P309 图 18-6 5-磷酸核糖焦磷酸转酰胺酶是关键酶,可被终产物 AMP、GMP 反馈抑制。 AMP 过量可反馈抑制自身的合

10、成。 GMP 过量可反馈抑制自身的合成。 5、 药物对嘌呤核苷酸合成的影响 筛选抗肿瘤药物,肿瘤细胞核酸合成速度快,药物能抑制。 羽田杀菌素 与 Asp 竞争腺苷酸琥珀酸合成酶,阻止次黄嘌呤核苷酸转化成 AMP。 重氮乙酰丝氨酸、6-重氮-5-氧正亮氨酸,是 Gln 的结构类似物,抑制 Gln 参与的反应。 氨基蝶呤、氨甲蝶呤 结构 P314 叶酸的结构类似物,能与二氢叶酸还原酶发生不可逆结合,阻止 FH4的生成,从而抑制 FH4 参与的各种一碳单位转移反应。 二、 补救途径 利用已有的碱基和核苷合成核苷酸 1、 磷酸核糖转移酶途径(重要途径) 嘌呤碱和 5-PRPP 在特异的磷酸核糖转移酶的

11、作用下生成嘌呤核苷酸 - 6 - 2019 年 王镜岩版生物化学考研参考笔记 - 7 - 安雨(整理) 2、 核苷激酶途径(但在生物体内只发现有腺苷激酶) 腺嘌呤在核苷磷酸化酶作用下转化为腺嘌呤核苷,后者在核苷磷酸激酶的作用下与 ATP 反应,生成腺嘌呤核苷酸。 嘌呤核苷酸的从头合成与补救途径之间存在平衡。 Lesch-Nyan 综合症就是由于次黄嘌呤: 鸟嘌呤磷酸核糖转移酶缺陷,AMP 合成增加,大量积累尿酸,肾结石和痛风。 第三节 嘧啶核苷酸的合成 一、 从头合成 与嘌呤核苷酸合成不同,在合成嘧啶核苷酸时,首先合成嘧啶环,再与磷酸核糖结合,生成尿嘧啶核苷酸,最后由尿嘧啶核苷酸转化为胞嘧啶核

12、苷酸和胸腺嘧啶脱氧核苷酸。 合成前体: 氨甲酰磷酸、Asp (P309 图 18-7 嘧啶环的元素来源) 1、 尿嘧啶核苷酸的合成 P310 图 18-8 (1) 天冬氨酸转氨甲酰酶 (2) 二氢乳清酸酶 (3) 二氢乳清酸脱氢酶(辅基: FAD、FMN) - 7 - 2019 年 王镜岩版生物化学考研参考笔记 - 8 - 安雨(整理) (4) 乳清苷酸焦磷酸化酶 (5) 乳清苷酸脱羧酶 2、 胞嘧啶核苷酸的合成 尿嘧啶核苷三磷酸可直接与 NH3(细菌)或 Gln(植物)反应,生成胞嘧啶核苷三磷酸。 3、 嘧啶核苷酸生物合成的调节(大肠杆菌) P 311 图 18-9 大肠杆菌嘧啶核苷酸生物合

13、成的调节 氨甲酰磷酸合成酶: 受 UMP 反馈抑制 天冬氨酸转氨甲酰酶: 受 CTP 反馈抑制 CTP 合成酶: 受 CTP 反馈抑制 4、 药物对嘧啶核苷酸合成的影响 有多种嘧啶类似物可抑制嘧啶核苷酸的合成。 5-氟尿嘧啶抑制胸腺嘧啶脱氧核苷酸的合成。 5-氟尿嘧啶在人体内转变成相应的核苷酸,再转变成脱氧核苷酸,可抑制脱氧胸腺嘧啶核酸合成酶,干扰尿嘧啶脱氧核苷酸经甲基化生成脱氧胸苷的过程,DNA 合成受阻。 - 8 - 2019 年 王镜岩版生物化学考研参考笔记 - 9 - 安雨(整理) 二、 补救途径 (1) 嘧啶核苷激酶途径(重要途径) 嘧啶碱与 1-磷酸核糖生成嘧啶核苷,然后由尿苷激酶

14、催化尿苷和胞苷形成 UMP 和 CMP。 (2) 磷酸核糖转移酶途径(胞嘧啶不行) 第四节 脱氧核苷酸的合成 脱氧核糖核苷酸是由相应的核糖核苷酸衍生而来的。 (1)腺嘌呤、鸟嘌呤和胞嘧啶核糖核苷酸经还原,将核糖第二位碳原子的氧脱去,即成为相应的脱氧核糖核苷酸。 (2)胸腺嘧啶脱氧核糖核苷酸: 先由尿嘧啶核糖核苷酸还原形成尿嘧啶脱氧核糖核苷酸,然后尿嘧啶再经甲基化转变成胸腺嘧啶。 一、 核糖核苷酸的还原 ADP、GDP、CDP、UDP 均可分别被还原成相应的脱氧核糖核苷酸: dADP、dGDP、dCDP、dUDP 等,其中 dUDP 甲基化,生成 dTDP。 还原反应一般在核苷二磷酸(NDP)水

15、平上进行,ATP、dATP、dTTP、dGTP 是还原酶的变构效应物,个别微生物(赖氏乳菌杆菌)在核苷三磷酸水平上还原(NTP)。 1、 核苷酸还原酶系 P312 图示 由硫氧还蛋白、硫氧还蛋白还原酶和核苷酸还原酶(B1、B2)三部分组成。 B1、B2 亚基结合后,才具有催化活性。 B1 上的巯基和 B2 上的酪氨酸残基是活性中心的催化基因。 另外核苷酸还原酶所需的还原当量还可来自谷胱甘肽。 硫氧还蛋白 -SH 硫氧还蛋白还原酶、辅酶 FAD - 9 - 2019 年 王镜岩版生物化学考研参考笔记 - 10 - 安雨(整理) 谷胱甘肽氧还蛋白(酶) 谷胱甘肽还原酶 -SH 核苷酸还原酶(RR)

16、-SH 2、 核苷酸还原酶结构模型及催化机理 (11)、 结构模型 B1 亚基上有两个调节部位,一个影响整个酶的活性(一级调节部位),另一个调节对底物的专一性(底物结合部位) 一级调节部位: ATP 是生物合成的信号分子,而 dATP 是核苷酸被还原的信号。 底物调节部位: .与 ATP 结合,可促进嘧啶类的 UDP、CDP 还原成dUDP、dCDP;与 dTTP 或 dGTP 结合,可促使 GDP(ADP)还原成 dGDP(dADP) (12)、 催化机理 自由基催化转换模型。 3、 脱氧核苷酸的补救(脱氧核苷激酶途径) 脱氧核苷酸也能利用已有的碱基或核苷进行合成(补救途径),但只有脱氧核苷

17、激酶途径,不存在类似的磷酸核糖转移酶途径 二、 胸腺嘧啶脱氧核苷酸的合成 由尿嘧啶脱氧核苷酸(dUMP)经甲基化生成。 Ser 提供甲基,NADPH 提供还原当量。 四氢叶酸是一碳的载体,参与嘌呤核苷酸和胸腺嘧啶脱氧核苷酸的合成。 - 10 - 2019 年 王镜岩版生物化学考研参考笔记 - 11 - 安雨(整理) 氨基嘌呤、氨甲蝶呤是叶酸的类似物,能与二氢叶酸还原酶不可逆结合,阻止 FH4 的生成,从而抑制 FH4 参与的一碳单位的转移。 可用于抗肿瘤。 三、 核苷酸合成总结 P314 图 18-10 第五节 辅酶核苷酸的生物合成 NAD、NADP、 FMN、 FAD、 CoA 一、 烟酰胺

18、核苷酸的合成(NAD 、NADP) NAD、NADP 是脱氢辅酶,在生物氧化还原系统中传递氢。 合成途径: (1)烟酸单核苷酸焦磷酸化酶 (2)脱酰胺-NAD 焦磷酸化酶 (3)NAD 合成酶 NADP 的合成: NAD 激酶催化 NAD 与 ATP 反应,使 NAD 的腺苷酸残基的核糖 2-OH 磷酸化,生成 NADP。 二、 黄素核苷酸的合成(FMN、FAD) 三、 辅酶 A 的合成 CoA-SH 前体: 腺苷酸、泛酸、巯基乙胺、磷酸 途径: (1)泛酸激酶 (2)磷酸泛酰半胱氨酸合成酶 (3)磷酸泛酰半胱氨酸脱羧酶 (4)脱磷酸辅酶 A 焦磷酸化酶 (5)脱磷酸辅酶 A 激酶 代谢途径的相互联系 P420 图 22-1 - 11 -

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1