ImageVerifierCode 换一换
格式:DOCX , 页数:139 ,大小:74.98KB ,
资源ID:20536803      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/20536803.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(湖南省高一必修一数学教案Word文件下载.docx)为本站会员(b****5)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

湖南省高一必修一数学教案Word文件下载.docx

1、记作A(或a A)(举例)5. 常用数集及其记法非负整数集(或自然数集),记作N正整数集,记作N*或N+;整数集,记作Z有理数集,记作Q实数集,记作R(二)集合的表示方法我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。(1)列举法:把集合中的元素一一列举出来,写在大括号内。如:1,2,3,4,5,x2,3x+2,5y3-x,x2+y2,;思考2,引入描述法说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。(2)描述法:把集合中的元素的公共属性描述出来,写在大括号内。具体方法:在大括号内先写上表示这个集合元素的一般符号及取

2、值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。x|x-32,(x,y)|y=x2+1,直角三角形,;强调:描述法表示集合应注意集合的代表元素(x,y)|y=x2+3x+2与y|y=x2+3x+2不同,只要不引起误解,集合的代表元素也可省略,例如:整数,即代表整数集Z。辨析:这里的已包含“所有”的意思,所以不必写全体整数。下列写法实数集,R也是错误的。列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。三、 归纳小结本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说

3、明,然后介绍了集合的常用表示方法,包括列举法、描述法。课题:1.2集合间的基本关系类比实数的大小关系引入集合的包含与相等关系了解空集的含义教学目的:(1)了解集合之间的包含、相等关系的含义;(2)理解子集、真子集的概念;(3)能利用Venn图表达集合间的关系;(4)了解与空集的含义。子集与空集的概念;用图表达集合间的关系。弄清元素与子集、属于与包含之间的区别;四、 引入课题1、复习元素与集合的关系属于与不属于的关系,填以下空白:(1)0 N;(2) 2 Q;(3)-1.5 R2、类比实数的大小关系,如52,B=x|x5,并表示A、B的关系;(七) 归纳小结,强化思想两个集合之间的基本关系只有“

4、包含”与“相等”两种,可类比两个实数间的大小关系,同时还要注意区别“属于”与“包含”两种关系及其表示方法;已知集合x|0,A=1,3,5,7,9,B=1,4,7,10,且X,,试求p、q;A=x|x2+px-2=0,B=x|x2-x+q=0,若B=-2,0,1,求p、q;(3)A=2,3,a2+4a+2,B=0,7,a2+4a-2,2-a,且=3,7,求1.2.1函数的概念函数是描述客观世界变化规律的重要数学模型高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想(1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此

5、基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)了解构成函数的要素;(3)会求一些简单函数的定义域和值域;(4)能够正确使用“区间”的符号表示某些函数的定义域;理解函数的模型化思想,用合与对应的语言来刻画函数;符号“y=f(x)”的含义,函数定义域和值域的区间表示;九、 引入课题1. 复习初中所学函数的概念,强调函数的模型化思想;2. 阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:(1)炮弹的射高与时间的变化关系问题;(2)南极臭氧空洞面积与时间的变化关系问题;(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题备用实例:我国20

6、03年4月份非典疫情统计:日 期 22 23 24 25 26 27 28 29 30新增确诊病例数 106 105 89 103 113 126 98 152 1013. 引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;4. 根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系十、 新课教学(一)函数的有关概念1函数的概念:是非空的数集,如果按照某个确定的对应关系f,使对于集合中的任意一个数x,在集合中都有唯一确定的数f(x)和它对应,那么就称f:AB为从集合到集合的一个函数(function) y=f(x),xA其中,x叫做自变量,x的取值范围叫做函数的定

7、义域(domain;的值相对应的y值叫做函数值,函数值的集合f(x)|值域(range)注意:“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”函数符号“y=f(x)”中的f(x)表示与对应的函数值,一个数,而不是f乘x2构成函数的三要素:定义域、对应关系和值域3区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示4一次函数、二次函数、反比例函数的定义域和值域讨论(由学生完成,师生共同分析讲评)(二)典型例题1求函数定义域函数的定义域通常由问题的实际背景确定。如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使

8、这个式子有意义的实数的集合;函数的定义域、值域要写成集合或区间的形式2判断两个函数是否为同一函数构成函数三个要素是定义域、对应关系和值域由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。判断下列函数f(x)与g(x)是否表示同一个函数,说明理由?(1)f)(x1) 0;g(2)f=(3)fx 2;f1)(4)f(三)课堂练习求下列函数的定义域(x)-|1+= -24x(4)(5)6x10(6)+ x3十一、 归纳小结,强化思想从具体实例引入了函

9、数的的概念,用集合与对应的语言描述了函数的定义及其相关概念,介绍了求函数定义域和判断同一函数的典型题目,引入了区间的概念来表示集合。1.2.2映射(1)了解映射的概念及表示方法,了解象、原象的概念;(2)结合简单的对应图示,了解一一映射的概念映射的概念十二、 引入课题复习初中已经遇到过的对应:1对于任何一个实数a,数轴上都有唯一的点P和它对应;对于坐标平面内任何一个点A,都有唯一的有序实数对(x,y)和它对应;3对于任意一个三角形,都有唯一确定的面积和它对应;4某影院的某场电影的每一张电影票有唯一确定的座位与它对应;5函数的概念十三、 新课教学我们已经知道,函数是建立在两个非空数集间的一种对应

10、,若将其中的条件“非空数集”弱化为“任意两个非空集合”,按照某种法则可以建立起更为普通的元素之间的对应关系,这种的对应就叫映射(mapping)先看几个例子,两个集合的元素之间的一些对应关系(1)开平方;(2)求正弦(3)求平方;(4)乘以2;什么叫做映射?一般地,设是两个非空的集合,如果按某一个确定的对应法则f,使对于集合中的任意一个元素中都有唯一确定的元素与之对应,那么就称对应的一个映射(mapping)记作“f:(1)这两个集合有先后顺序,A到的射与的映射是截然不同的其中表示具体的对应法则,可以用汉字叙述(2)“都有唯一”什么意思?包含两层意思:一是必有一个;二是只有一个,也就是说有且只

11、有一个的意思。例题分析:下列哪些对应是从集合的映射?(1)A=P是数轴上的点,B=R,对应关系数轴上的点与它所代表的实数对应;(2)A=是平面直角体系中的点,B=(x,y)|xR,yR,对应关系平面直角体系中的点与它的坐标对应;(3)A=三角形,B=x是圆,对应关系每一个三角形都对应它的内切圆;(4)A=x是新华中学的班级,B=x是新华中学的学生,对应关系每一个班级都对应班里的学生思考:将(3)中的对应关系改为:每一个圆都对应它的内接三角形;(4)中的对每一个学生都对应他的班级,那么对应B A是从集合到的映射吗?函数的表示法(1)明确函数的三种表示方法;(2)在实际情境中,会根据不同的需要选择

12、恰当的方法表示函数;(3)通过具体实例,了解简单的分段函数,并能简单应用;(4)纠正认为“y=f(x)”就是函数的解析式的片面错误认识函数的三种表示方法,分段函数的概念根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?分段函数的表示及其图象十四、 引入课题5. 复习:函数的概念;6. 常用的函数表示法及各自的优点:(1)解析法;(2)图象法;(3)列表法十五、 新课教学(一)典型例题例1某种笔记本的单价是5元,买(x1,2,3,4,5)个笔记本需要元试用三种表示法表示函数y=f(x)分析:注意本例的设问,此处“y=f(x)”有三种含义,它可以是解析表达式,可以是图象,也可以是对应值表解:

13、(略)函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;解析法:必须注明函数的定义域;图象法:是否连线;列表法:选取的自变量要有代表性,应能反映定义域的特征巩固练习:1下表是某校高一(1)班三位同学在高一学年度几次数学测试的成绩及班级及班级平均分表:王 伟张 城赵 磊班平均分第一次989068882第二次877665783第三次918873854第四次927572803第五次86757第六次958082826请你对这三们同学在高一学年度的数学学习情况做一个分析本例应引导学生分析题目要求,做学情分析,具体要分析什么?怎么分析?借助什么工具?本例为了研究学生的学习情况,将离散的点用虚线连接,这样更便于研究成绩的变化特点;本例能否用解析法?为什么?3画出函数拓展练习:任意画一个函数y=f(x)的图象,然后作出y=|f(x)|和y=f(|x|)的图象,并尝试简要说明三者(图象)之间的关系4某市郊空调公共汽车的票价按下列规则制定:乘坐汽车公里以内,票价元;公里以上,每增加公里,票价增加元(不足公里按公里

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1