1、说明 封闭三角形解法对平面共点三力平衡的定性讨论,简捷直观。本题是一种动态变化题目,这种题目在求解时,还可用一种极限法判断,如把AB板与竖直墙壁夹角增到90时,可知N1=0,过程中N1一直减小,N2=mg,N2也一直在减小。例3如图1所示,用一个三角支架悬挂重物,已知AB杆所受的最大压力为2000N,AC绳所受最大拉力为1000N,=30,为不使支架断裂,求悬挂物的重力应满足的条件?分析悬绳A点受到竖直向下的拉力FG,这个拉力将压紧水平杆AB并拉引绳索AC,所以应把拉力F沿AB、CA两方向分解,设两分力为F1、F2,画出的平行四边形如图2所示。解由图2可知:因为AB、AC能承受的最大作用力之比
2、为当悬挂物重力增加时,对AC绳的拉力将先达到最大值,所以为不使三角架断裂,计算中应以AC绳中拉力达最大值为依据,即取F2=F2m=1000N,于是得悬挂物的重力应满足的条件为GmF2sin30500N,说明也可取A点为研究对象,由A点受力,用共点平衡条件求解。A点受三个力:悬挂物的拉力F=G,杆的推力FB,绳的拉力FC,如图4所示。根据共点力平衡条件,由FCsin=G,FCcos=FB,即得 共点力平衡条件可以适用于多个力同时作用的情况,具有更普遍的意义。例4如图1所示,细绳CO与竖直方向成30角,A、B两物体用跨过滑轮的细绳相连,已知物体B所受到的重力为100N,地面对物体B的支持力为80N
3、,试求(1)物体A所受到的重力;(2)物体B与地面间的摩擦力;(3)细绳CO受到的拉力。分析此题是在共点力作用下的物体平衡问题, 据平衡条件Fx=0,Fy=0,分别取物体B和定滑轮为研究对象,进行受力情况分析,建立方程。解如图2所示,选取直角坐标系。据平衡条件得f-T1sin=0,NT1cos-mBg=0。对于定滑轮的轴心O点有 T1sin-T2sin30=0, T2cos30-T1cos-mAg=0。 因为T1=mAg,得=60,解方程组得(1)T1=40N,物体A所受到的重力为40N;(2)物体B与地面间的摩擦力 fT1sin=40sin6034.6N;(3)细绳CO受到的拉力在本题中,我
4、们选取定滑轮的轴心为研究对象,并认定T1与mAg作用在这点上,即构成共点力,使问题得以简化。例5如图1所示,在质量为1kg的重物上系着一条长30cm的细绳,细绳的另一端连着圆环,圆环套在水平的棒上可以滑动,环与棒间的静摩擦因数为0.75,另有一条细绳,在其一端跨过定滑轮,定滑轮固定在距离圆环0.5m的地方。当细绳的端点挂上重物G,而圆环将要开始滑动时,试问(1)长为30cm的细绳的张力是多少?(2)圆环将要开始滑动时,重物G的质量是多少?(3)角多大?分析选取圆环作为研究对象,分析圆环的受力情况:圆环受到重力、细绳的张力T、杆对圆环的支持力N、摩擦力f的作用。解因为圆环将要开始滑动,所以,可以
5、判定本题是在共点力作用下物体的平衡问题。由牛顿第二定律给出的平衡条件Fx=0,Fy=0,建立方程有N-Tcos=0,N-Tsin0。设想:过O作OA的垂线与杆交于B点,由AO=30cm,tg=, 得BO的长为40cm。在直角三角形中,由三角形的边长条件得AB=50cm,但据题述条件AB=50cm,故B点与滑轮的固定处B点重合,即得=90。(1)如图2所示选取坐标轴,根据平衡条件有Gcos+Tsin-mg=0,Tcos-Gsin=0。解得 T8N,(2)圆环将要滑动时,得 mGgTctg, mG=0.6kg。(3)前已证明为直角。例6如图1所示,质量为m5kg的物体放在水平面上,物体与水平面间的
6、动摩擦因数求当物体做匀速直线运动时,牵引力F的最小值和方向角。分析本题考察物体受力分析:由于求摩擦力f时,N受F制约,而求F最小值,即转化为在物理问题中应用数学方法解决的实际问题。我们可以先通过物体受力分析。据平衡条件,找出F与关系。进一步应用数学知识求解极值。解 作出物体m受力分析如图2,由平衡条件。Fx=Fcos-N=0 (1)Fy=Fsin+N-G=0 (2)由 cos(-)=1 即 =0时 =30,=30说明 本题中我们应用了数学上极值方法,来求解物理实际问题,这是在高考中考察的一项重要能力。在以后解题中我们还会遇到用如:几何法、三角形法等数学方法解物理问题,所以,在我们学习物理时,逐
7、步渗透数学思想,对解决物理问题是很方便的。但要注意,求解结果和物理事实的统一性。例7如图1,A、B两物体质量相等,B用细绳拉着,绳与倾角的斜面平行。A与B,A与斜面间的动摩擦因数相同,若A沿斜面匀速下滑,求动摩擦因数的值。分析 本题主要考察受力分析及物体平衡条件。选择A为研究对象,分析物体A受力,应用正交分解法。据平衡条件求解。解取A为研究对象,画出A受力如图2,建立如图所示坐标系。据物体平衡条件Fx=mgsin-f1-f2=0 (1)FyN1-NB-mgcos=0 (2)其中 f1=N1 (3)f2=NB (4)由B受力知 NBmgcos (5)联立上面式(1)(2)(3)(4)(5)得(1
8、)本题在进行受力分析时,要注意A与斜面C的接触力N1和f1,A与物体B的接触力N2和f2,一定注意,N1和N2的取值。(2)本题可以变化为若A沿斜面加速下滑,或沿斜面减速下滑。应满足关系?则加速时 mgsinN1+NB(3)摩擦力公式fN,有时因物体只受水平作用力,f=N=mg,但当物体受力变化以后, N就不一定等于mg了,如图3的两个情形。所以切记:公式一定要写成N。对N求解不要想当然,应据题设进行实际分析而得。【例8】如图1所示,支杆BC一端用铰链固定于B,另一端连接滑轮C,重物P上系一轻绳经C固定于墙上A点。若杆BC、滑轮C及绳子的质量、摩擦均不计,将绳端A点沿墙稍向下移,再使之平衡时,
9、绳的拉力和BC杆受到的压力如何变化?误解一滑轮C点受杆BC的支持力F、绳AC的拉力T和绳CP的拉力Q(其中Q大小等于G),如图2所示。由平衡条件可得FGsin, TGcos当绳的A点下移后,增大,所以F增大,而T减小。误解二滑轮C点受到杆BC支持力F,绳AC的拉力T和绳CP的拉力Q(其中Q的大小等于G),如图3,T与F的合力与Q等值反向。当 A点下移后,T与竖直方向的夹角要增大,滑轮C也要下降,使BC与墙间的夹角增大,但因这两力的合力始终与Q等值反向,所以这两个分力均要增大。正确解答滑轮C点受到F、T、Q三力作用而平衡,三力组成封闭三角形,如图4,注意到同一条绳上各处张力都相同,则有T=Q=G
10、,以杆受到压力增大,而绳子拉力仍不变,大小为G。错因分析与解题指导当不计绳子的质量时,绳子各处张力都相等,两个误解都未认识这个事实。另外,误解一自设T与 F垂直作为讨论依据并将它扩展到一般情况,是毫无道理的。误解二则臆断A点下移时,滑轮C也要下降,BC与墙间的夹角增大,与事实不符。值得一提的是:本题BC杆对滑轮C点的作用力是沿着杆子的,而这是有条件的,仅当BC杆重力不计且只受两个力作用而平衡时,上述结论才成立。1明确研究对象,对它进行受力分析,画出受力图;2根据平衡条件列方程;3统一单位,代入数字、解方程、求答案。由题讲话由题讲话,促使学生积极思维,获得更加全面的知识,加深对物理现象和规律的理
11、解。现举一、二例加以说明。如图1,OA是一根横梁,一端安在轴O上,另一端用钢索AB拉着,在B处安装一小滑轮,可以改变钢索的长度,OBOA,在A端挂一重物G。(横梁重不计)试求钢索BA的拉力?学生不感到困难。根据M=0,解得:这时教师向学生发问:若将钢索BA加长(即缓慢下放),钢索的拉力F如何变化?学生根据上面的结果自然会想到,角将逐渐变小,力F必将逐渐增大。当角趋近于零时,F将变得无限大!?F逐渐变大,与感性认识不太相符;无限大,显然不符合实际情况,感到疑惑不解。毛病出在哪里呢?让学生去思索结症在哪里。教师可以启发学生,在缓慢下放的过程中,角变小,但F的力臂也随着变小,(注意表达式Lsin不变
12、),尤其G的力臂也在变小,不再是OA的长,显然图1不能反映一般的情况,应该重新作图分析,如图2。为说明解题的方法是多种的,可以用共点力平衡法去解。根据正弦定理:可见,下放时,角逐渐变小,力F1逐渐变大。这个结果与上面的“一致”。应该指出表达式(2)在形式上与表达式(1)显然不同,但(2)却包括了(1)式的结果。再看,若角趋近零时,力F1又如何?学生自然会得出,F1趋近2G?!又会感到不解。在学生的思维里,应为F1=G或F1=G/2才有理。这时教师可以让学生求一下F2=?计算结果F2=G。又看到在下放的过程中F2却始终不变,也是出乎意料。这两个意外的结果有助于揭开谜底。这时应指出在这个三角架装置
13、中,OA必须是杆,不能用绳来代替,它起着支撑的作用。通过计算已知,在下放的过程中,OA杆的支撑力始终不变,为G。所以当角趋近于零时,力F1将趋近GG=2G。必须指出趋近于零,并不是等于零。若等于零后,那么钢索的拉力F1就是不定的了,已经越过本题所讨论的范围。还可以让学生研究一下逐渐上拉时的变化情况化?此题属共点力平衡问题,一般可采用正交分解法,三角形法则,或是作图法求解,过程并非简单若换用转动平衡条件M=0,只要支点选得适当,会使问题一目了然先考查BC绳的张力F1,以A为支点,将绳AB与小球视为一刚体,平衡时应有:MF1-MG=0 即 MF1=MG由于角保持不变,则重力的力矩MG将保持恒定,因
14、而F1的大小变化主要依赖它对A点的力臂的变化,当BC垂直于AB时,F1的力臂等于绳长AB,其它位置的力臂均小于AB,故由此可知在C点上移的过程中,BC绳的张力F1先变小后变大再考虑AB绳的张力F2:以移动的C点为支点(设BC绳能满足长度的需要),由于C点始终在竖直墙壁上,重力G的力矩仍保持不变,而AB绳的张力F2的力臂逐渐变长,如图2所示故F2将逐渐变小运用M=0求解决共点力的平衡问题,往往是将研究对象扩大化,将质点向外延伸为非质点加上合适的支点选取,使力矩的个数减少,方程简捷,物理过程简单明了同时又能培养学生的思维能力,变定势思维为发散思维怎样分析物体的平衡问题物体的平衡问题是力的基本概念及
15、平行四边形定则的直接应用,也是进一步学习力和运动关系的基础怎样学好这部分知识呢?一、明确分析思路和解题步骤解决物理问题必须有明确的分析思路而分析思路应从物理问题所遵循的物理规律本身去探求物体的平衡遵循的物理规律是共点力作用下物体的平衡条件:F合=0,要用该规律去分析平衡问题,首先应明确物体所受该力在何处“共点”,即明确研究对象在分析出各个力的大小和方向后,还要正确选定研究方法,即合成法或分解法,利用平行四边形定则建立各力之间的联系,借助平衡条件和数学方法,确定结果由上述分析思路知,解决平衡问题的基本解题步骤为:1明确研究对象在平衡问题中,研究对象常有三种情况:单个物体,若物体能看成质点,则物体
16、受到的各个力的作用点全都画到物体的几何中心上;若物体不能看成质点,则各个力的作用点不能随便移动,应画在实际作用位置上物体的组合,遇到这种问题时,应采用隔离法,将物体逐个隔离出去单独分析,其关键是找物体之间的联系,相互作用力是它们相互联系的纽带几个物体的的结点,几根绳、绳和棒之间的结点常常是平衡问题的研究对象2分析研究对象的受力情况分析研究对象的受力情况需要做好两件事:确定物体受到哪些力的作用,不能添力,也不能漏力常用的办法是首先确定重力,其次找接触面,一个接触面通常对应一对弹力和摩擦力,找到接触面后,判定这两个力是否在;第三是加上其它作用力,如拉力、推力等;准确画出受力示意图力的示意图关键是力
17、的方向的确定,要培养养成准确画图的习惯在分析平衡问题时,很多同学常出错误,其重要原因就是画图不重视、不规范,将力的方向搞错,导致全题做错3选取研究方法合成法或分解法合成法或分解法实际上都是平行四边形定则,采用这两种方法的实质是等效替代,即通过两个力的等效合成或某个力的两个等效分力建立已知力与被求力之间的联系,为利用平衡条件解问题做好铺垫在解题中采用合成法还是分解法应视问题而定,当受力较少时,两种方法求解都很方便由于高中阶段在对力进行合成或分解时只要求会用直角三角形讨论计算,因此,对物体受力进行正交分解,利用正交分解法求解的平衡问题较为常见在建立正交坐标系时,其基本原则是使尽可能多的力在坐标轴上
18、,这样分解的力个数少,求解时方便4利用平衡条件建立方程利用合成法分析问题时,其平衡方程为:F合=0利用分解法特别是正交分解法分析平衡问题时,其平衡方程为:Fx=0 Fy=05数学方法求解建立平衡方程后,利用数学方法即可得到结果在平衡问题中,常用的数学方法有:代数法、三角函数法、相似三角形法、极值问题等,通过对学生选择数学方法解题过程的考查,可以鉴别其运用数学工具处理物理问题的能力例1、图中重物的质量为m,轻细线AO和BO的A、B端是固定的,平衡时AD是水平的,BO与水平面的夹角为AO的拉力F1和BO的拉力F2的大小是:A、F1=mgcos; B、F1=mgctg;C、F2=mgsin; D、F
19、2=mgsin析:如图1,三根细绳在O,点共点,取O点(结点)为研究对象,分析O点受力如图2O点受到AO绳的拉力F1、BO绳的拉力F2以及重物对它的拉力T三个力的作用图2(a)选取合成法进行研究,将F1、F2合成,得到合力F,由平衡条件知:F=T=mg则: F1=Fctg=mgctgF2=Fsin=mgsin图2(b)选取分解法进行研究,将F2分解成互相垂直的两个分力Fx、Fy,由平衡条件知:Fy=T=mg,Fx=F1 F2=Fy/sin=mg/sinF1=Fx=Fyctg=mgctg二、掌握题型抓关键明确分析思路和解题步骤后,各种各样的平衡问题均可按此步骤分析求解但在实际解题过程中仍感到困难
20、重重原因何在?原因在于命题者为增加试题难度,在上述解题步骤的某个环节上设置障碍,造成学生分析思维受阻若能找到这些障碍点,即关键之处,并加以突破,问题便迎刃而解了1三力平衡问题物体在三个力的作用下处于平衡状态,要求我们分析三力之间的相互关系的问题叫三力平衡问题,这是物体受力平衡中最重要、最典型也最基础的平衡问题这种类型的问题有以下几种常见题型(1)三个力中,有两个力互相垂直,第三个力角度(方向)已知。例1即属此类情况这是一种最常见的三力平衡问题通常利用上述解题步骤即可方便求解此类问题若出现解题障碍的话,障碍就出在怎样确定研究对象上例2、如图3,质量为m的物块放在倾角为的斜面上,求:斜面对物块的支
21、持力;假想把物块分成质量相等的a、b两部分(实际上仍为一整体),哪一部分对斜面的压力大?求斜面对物块的支持力时,取物块为研究对象,并将其视为质点,作出其受力分析图如图4(a),将重力G沿斜面和垂直斜面方向分解,并利用平衡条件不难求出:N=mgcos分析a、b两部分谁对斜面压力大时,要明确此时物体不能再看成质点,因此物体受到的各力的作用点不能随意移动,而应画在实际作用点上由于弹力和摩擦力的作用点都在接触面上,利用三力平衡必共点的特点(即物体在互相不平行的三个力作用下处于平衡状态时,这三个力必为共点力),得到物块的受力如图4(b)所示,弹力的作用点在a部分,说明a部分对斜面的压力大(2)三个力互相
22、不垂直,但夹角(方向)已知考试说明中规定力的合成与分解的计算只限于两力之间能构成直角的情形三个力互相不垂直时,无论是用合成法还是分解法,三力组成的三角形都不是直角三角形,造成求解困难因而这种类型问题的解题障碍就在于怎样确定研究方法上解决的办法是采用正交分解法,将三个不同方向的力分解到两个互相垂直的方向上,再利用平衡条件求解(3)三个力互相不垂直,且夹角(方向)未知三力方向未知时,无论是用合成法还是分解法,都找不到合力与分力之间的定量联系,因而单从受力分析图去求解这类问题是很难找到答案的要求解这类问题,必须变换数学分析的角度,从我们熟悉的三角函数法变换到空间几何关系上去考虑,因而这种问题的障碍点
23、是如何正确选取数学分析的方法解决这种类型的问题的对策是:首先利用合成法或分解法作出三力之间的平行四边形关系和三角形关系,再根据力的三角形寻找与之相似的空间三角形,利用三角形的相似比求解例4、如图7,半径为R的光滑半球的正上方,离球面顶端距离为h的O点,用一根长为l的细线悬挂质量为m的小球,小球靠在半球面上试求小球对球面压力的大小取小球为研究对象,小球受到重力mg,绳的拉力T和半球面的支持力N三个力的作用,如图8所示将T和N合成,得到合力F,由平衡条件知:F=mg由图8可以看出,力的三角形ACD与空间三角形OAB相似,则:(4)三力的动态平衡问题即三个力中,有一个力为恒力,另一个力方向不变,大小
24、可变,第三个力大小方向均可变,分析第三个力的方向变化引起的物体受力的动态变化问题这种类型的问题不需要通过具体的运算来得出结论,因而障碍常出现在受力分析和画受力分析图上在分析这类问题时,要注意物体“变中有不变”的平衡特点,在变中寻找不变量即将两个发生变化的力进行合成,利用它们的合力为恒力的特点进行分析在解决这类问题时,正确画出物体在不同状态时的受力图和平行四边形关系尤为重要例5、如图9所示,用竖直档板将小球夹在档板和光滑斜面之间,若缓慢转动挡板,使其由竖直转至水平的过程中,分析球对挡板的压力和对斜面的压力如何变化取小球为研究对象,小球受到重力G,档板给小球的支持力N1和斜面给小球的支持力N2三个
25、力作用,如图10所示,将N1和N2合成,得到合力F,由平衡条件知,F=G为一定值由于N2总垂直接触面(斜面),方向不变,则N1方向改变时,其大小(箭头)只能沿PQ线变动,如图示显然在档板移动过程中,N1先变小后变大,N2一直减小由牛顿第三定律,小球对档板的压力先变小后变大,小球对斜面的压力逐渐减小2多力平衡问题巧解变动中的三力平衡问题在中学阶段,力的平衡问题,多为三力平衡,按平衡条件,合力必为零,将三力首尾相联即围成一封闭三角形。一般来说,只要所给条件能满足解这个三角形的条件(如已知两边夹一角或两角夹一边)就能按解三角形的方法解出这力三角形中要求的物理量。常遇到一类变动中的三力平衡问题。一般是
26、其中一个力大小和方向确定;另一个力的方向确定,大小可变;第三个力大小和方向均变化。要依据所给条件,确定后两力的变化规律。为了帮助学生们很好地理解,采用力三角形来解答,现举几例如下:例题1一个光滑的圆球搁在光滑的斜面和竖直的档板之间(图1),斜面和档板对圆球的弹力随斜面倾角变化而变化的范围是:A斜面弹力N1变化范围是(mg,)B斜面弹力N1变化范围是(0,)C档板的弹力N2变化范围是(0, +)D档板的弹力N2变化范围是(mg, )答:A、C解:圆球受三个力,其中重力的大小和方向均为确定的,档板对圆球的弹力N2的方向始终是水平的,亦为确定的。而斜面对圆球的作用力的大小和方向均在变化中,但不论如何变动,只要取一个确定的值,圆球就在三力作用下处于平衡状态,则此三力就组成一个封闭的三角形,如图2所示:由于090,所以mgN1,0N2解出。例题2如图3所示,用两根绳子系住一重物,绳OA与天花板夹角不变,且45,当用手拉住绳OB,使绳OB由水平慢慢转向OB过程中,OB绳所受拉力将A始终减少 B始终增大C先增大后减少 D先减少后增大
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1