1、(也被称为超规则)能被用来指导发现过程。 背景知识:这种原语允许用户指定已有的关于挖掘领域的知识。这样的 知识能被用来指导知识发现过程,并且评估发现的模式。关于数据中关 系的概念分层和用户信念是背景知识的形式。 模式兴趣度度量:这种原语允许用户指定功能,用于从知识中分割不感 兴趣的模式,并且被用来指导挖掘过程,也可评估发现的模式。这样就 允许用户限制在挖掘过程返回的不感兴趣的模式的数量,因为一种数据 挖掘系统可能产生大量的模式。兴趣度测量能被指定为简易性、确定性、 适用性、和新颖性的特征。 发现模式的可视化:这种原语述及发现的模式应该被显示出来。为了使 数据挖掘能有效地将知识传给用户,数据挖掘
2、系统应该能将发现的各种 形式的模式展示出来,正如规则、表格、饼或条形图、决策树、立方体或其它视觉的表示。1.4 1.13 描述以下数据挖掘系统与数据库或数据仓库集成方法的差别:不耦 合、松散耦合、半紧耦合和紧密耦合。你认为哪种方法最流行,为什么? 数据挖掘系统和数据库或数据仓库系统的集成的层次的差别如下。 不耦合:数据挖掘系统用像平面文件这样的原始资料获得被挖掘的原始 数据集,因为没有数据库系统或数据仓库系统的任何功能被作为处理过 程的一部分执行。因此,这种构架是一种糟糕的设计。 松散耦合:数据挖掘系统不与数据库或数据仓库集成,除了使用被挖掘 的初始数据集的源数据和存储挖掘结果。这样,这种构架
3、能得到数据库 和数据仓库提供的灵活、高效、和特征的优点。但是,在大量的数据集 中,由松散耦合得到高可测性和良好的性能是非常困难的,因为许多这 种系统是基于内存的。 半紧密耦合:一些数据挖掘原语,如聚合、分类、或统计功能的预计算, 可在数据库或数据仓库系统有效的执行,以便数据挖掘系统在挖掘-查询 过程的应用。另外,一些经常用到的中间挖掘结果能被预计算并存储到 数据库或数据仓库系统中,从而增强了数据挖掘系统的性能。 紧密耦合:数据库或数据仓库系统被完全整合成数据挖掘系统的一部 份,并且因此提供了优化的数据查询处理。这样的话,数据挖掘子系统 被视为一个信息系统的功能组件。这是一中高度期望的结构,因为
4、它有 利于数据挖掘功能、高系统性能和集成信息处理环境的有效实现。从以上提供的体系结构的描述看,紧密耦合是最优的,没有值得顾虑的技术 和执行问题。但紧密耦合系统所需的大量技术基础结构仍然在发展变化,其实现 并非易事。因此,目前最流行的体系结构仍是半紧密耦合,因为它是松散耦合和 紧密耦合的折中。1.5 1.14 描述关于数据挖掘方法和用户交互问题的三个数据挖掘挑战。第 2 章 数据预处理2.1 2.2 假设给定的数据集的值已经分组为区间。区间和对应的频率如下。年龄频率1520051545015203002050150050807008011044计算数据的近似中位数值。 先判定中位数区间:N=20
5、0+450+300+1500+700+44=3194;N/2=1597 200+450+300=95015972450=950+1500; 2050 对应中位数区间。 我们有:L1=20,N=3197,(freq) l=950,freqmed ian=1500,width=30,使用公式(2.3): N / 2 )freq l 3197 / 2 950 median L1 width 20 30 32.97 freq median 1500 median=32.97 岁。2.2 2.4 假定用于分析的数据包含属性 age。数据元组的 age 值(以递增序) 是:13,15,16,16,19,2
6、0,20,21,22,22,25,25,25,25,30,33,33,35,35,35,35,36,40,45,46,52,70。(a) 该数据的均值是什么?中位数是什么?(b) 该数据的众数是什么?讨论数据的峰(即双峰、三峰等)。(c) 数据的中列数是什么?(d) 你能(粗略地)找出数据的第一个四分位数(Q1)和第三个四分位数(Q3)吗?(e) 给出数据的五数概括。(f) 画出数据的盒图。(g) 分位数分位数图与分位数图的不同之处是什么?N 1 N均值是: x xii 1个,即 x14=25=Q2。 809 / 27 29.96 30 (公式 2.1 )。中位数应是第 14 这个数集的众数有
7、两个:25 和 35,发生在同样最高的频率处,因此是双峰众数。 数据的中列数是最大术和最小是的均值。即:midrange=(70+13)/2=41.5。(d) 你能(粗略地)找出数据的第一个四分位数(Q1)和第三个四分位数(Q3) 吗?数据集的第一个四分位数应发生在 25%处,即在(N+1)/4=7 处。所以:Q1=20。 而第三个四分位数应发生在 75%处,即在 3(N+1)/4=21 处。Q3=35一个数据集的分布的 5 数概括由最小值、第一个四分位数、中位数、第三个 四分位数、和最大值构成。它给出了分布形状良好的汇总,并且这些数据是:13、20、25、35、70。 略。 分位数图是一种用
8、来展示数据值低于或等于在一个单变量分布中独立的变量的粗略百分比。这样,他可以展示所有数的分位数信息,而为独立变量测得的 值(纵轴)相对于它们的分位数(横轴)被描绘出来。但分位数分位数图用纵轴表示一种单变量分布的分位数,用横轴表示另一单变量分布的分位数。两个坐标轴显示它们的测量值相应分布的值域,且点按照 两种分布分位数值展示。一条线(y=x)可画到图中,以增加图像的信息。落在 该线以上的点表示在 y 轴上显示的值的分布比 x 轴的相应的等同分位数对应的值 的分布高。反之,对落在该线以下的点则低。2.3 2.7 使用习题 2.4 给出的 age 数据回答下列问题:(a) 使用分箱均值光滑对以上数据
9、进行光滑,箱的深度为 3。解释你的步骤。 评述对于给定的数据,该技术的效果。(b) 如何确定数据中的离群点?(c) 对于数据光滑,还有哪些其他方法?用箱深度为 3 的分箱均值光滑对以上数据进行光滑需要以下步骤: 步骤 1:对数据排序。(因为数据已被排序,所以此时不需要该步骤。 步骤 2:将数据划分到大小为 3 的等频箱中。箱 1:13,15,16 箱 2:16,19,20 箱 3:20,21,22 箱 4:22,25,25 箱 5:25,25,30 箱 6:33,33,35 箱 7:35,35,35 箱 8:36,40,45 箱 9:46,52,70 步骤 3:计算每个等频箱的算数均值。 步骤
10、 4:用各箱计算出的算数均值替换每箱中的每个值。44/3,44/3 ,44/3 箱 2:55/3 ,55/3,55/3 箱 3:21,21,21箱 4:24,24,24 箱 5:80/3,80/3,80/3 箱 6:101/3,101/3 ,101/3箱 7:121/3,121/3 ,121/3 箱 9:56,56,56 (b) 如何确定数据中的离群点? 聚类的方法可用来将相似的点分成组或“簇”,并检测离群点。落到簇的集外的值可以被视为离群点。作为选择,一种人机结合的检测可被采用,而计算机 用一种事先决定的数据分布来区分可能的离群点。这些可能的离群点能被用人工 轻松的检验,而不必检查整个数据集
11、。其它可用来数据光滑的方法包括别的分箱光滑方法,如中位数光滑和箱边界 光滑。作为选择,等宽箱可被用来执行任何分箱方式,其中每个箱中的数据范围 均是常量。除了分箱方法外,可以使用回归技术拟合成函数来光滑数据,如通过 线性或多线性回归。分类技术也能被用来对概念分层,这是通过将低级概念上卷 到高级概念来光滑数据。2.4 2.10 如下规范化方法的值域是什么?(a) min-max 规范化。(b) z-score 规范化。(c) 小数定标规范化。 值域是new_min, new_max。 (b) z-score 规范化。值域是(old _min mean)/ ,(old_max mean)/,总的来说
12、,对于所有可能 的数据集的值域是(,+)。 值域是(1.0,1.0)。2.5 2.12 使用习题 2.4 给出的 age 数据,回答以下问题:(a) 使用 min-max 规范化将 age 值 35 变换到0.0,1.0区间。(b) 使用 z-score 规范化变换 age 值 35,其中 age 的标准差为 12.94 岁。(c) 使用小数定标规范化变换 age 值 35。(d) 对于给定的数据,你愿意使用哪种方法?陈述你的理由。 min A=13,maxA=70,new _min A=0.0,new _maxA=1.0,而 v=35,v v min AA new _ max new _ m
13、in new _ minmaxA min A 35 13 1.0 0.0 0.0 0.386070 13A 13 15 2 16 19 2 20 21 2 22 4 2527 30 2 33 4 35 36 40 45 46 52 70N 809 29 .963 2 Ai A N 161.2949 , A 2 12.7002或 s 2 167 .4986 , sA s 2 12.9421v=35v v A 35 29.963 5.037 0.3966 0.400 A 12.700212.7002s或 v 0.3892 0.39sA 12.942112.9421由于最大的绝对值为 70,所以 j
14、=2 。 vv10 j 3510 2 0.35略。2.6 2.14 假设 12 个销售价格记录组已经排序如下:5,10,11,13,15,35,50,55,72,92,204,215。使用如下每种方法将其划分成三个箱。(a) 等频(等深)划分。(b) 等宽划分。 (c) 聚类。bin15,10,11,1315,35,50,55bin1 72,91,204,215每个区间的宽度是:(215-5)/3=705,10,11,13,15,35,50,55,7291204,215(c) 聚类。我们可以使用一种简单的聚类技术:用 2 个最大的间隙将数据分成 3 个箱。5,10,11,13,1535,50,
15、55,72,912.7 2.15 使用习题 2.4 给出的 age 数据,(a) 画出一个等宽为 10 的等宽直方图;(b) 为如下每种抽样技术勾画例子:SRSWOR,SRSWR ,聚类抽样,分层 抽样。使用大小为 5 的样本和层“青年”,“中年”和“老年”。8765432115 25 35 45 55 65元组:T 113T 1022T 1935T 215T 1125T 20T 316T 12T 21T 4T 13T 2236T 519T 14T 2340T 620T 1530T 2445T 7T 1633T 2546T 821T 17T 2652T 9T 18T 2770SRSWOR 和
16、SRSWR:不是同次的随机抽样结果可以不同,但前者因无放回所以不能有相同的元组。SRSWOR(n=5)SRSWRT11聚类抽样:设起始聚类共有 6 类,可抽其中的 m 类。Sample1Sample2Sample3Sample4Sample5Sample6T6T7T8T9Sample2 Sample5T21T22T23T24T25分层抽样:按照年龄分层抽样时,不同的随机试验结果不同。T1youngmiddle ageT2T3T4T5seniorSenio r2.8 555555555555555555555555553.1 3.4 假定 BigUniversity 的数据仓库包含如下 4 个维
17、:student(student_name,area_id , major, status, university) , course(course_name, department) , semester(semester, year) 和 instructor(dept, rank);2 个度量:count 和 avg_grade。 在最低概念层, 度量 avg_grade 存放学生的实际 课程成绩。在较高概念层, avg_grade 存放给定组合的平均成绩。(a) 为该数据仓库画出雪花形模式图。(b) 由 基 本 方 体 student, course, semester, instru
18、ctor 开 始 , 为 列 出 BigUniversity 每个学生的 CS 课程的平均成绩,应当使用哪些特殊 的 OLAP 操作。(c) 如果每维有 5 层(包括 all),如“studentmajorstatusuniversityall ”, 该立方体包含多少方体?a) 为该数据仓库画出雪花形模式图。雪花模式如图所示。b) 由 基 本 方 体 student, course, semester, instructor 开 始 , 为 列 出 BigUniversity 每个学生的 CS 课程的平均成绩,应当使用哪些特殊的 OLAP 操作。这些特殊的联机分析处理(OLAP )操作有:i.
19、 沿课程(course)维从 course_id “上卷”到 department。ii. 沿学生(student)维从 student_id “上卷”到 university 。iii. 取 department= “CS ”和 university= “Big University ”,沿课程(course)维和学生(student)维切片。iv. 沿学生(student)维从 university 下钻到 student_name。c) 如果每维有 5 层(包括 all),如“student这个立方体将包含 54=625 个方体。course维表univstudent_idcourse_idstudent namesemester_idarea_idinstructor_idmajorcountstatus
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1