1、在学生思考讨论的基础上,教师明确:确定点在直线上,通过数轴需要一个数;确定点在平面内,通过平面直角坐标系需要两个数那么,要确定点在空间内,应该需要几个数呢?通过类比联想,容易知道需要三个数要确定电灯的位置,知道电灯到地面的距离、到相邻的两个墙面的距离即可(此时学生只是意识到需要三个数,还不能从坐标的角度去思考,因此,教师在这儿要重点引导)教师:在地面上建立直角坐标系xOy,则地面上任一点的位置只须利用x,y就可确定为了确定不在地面内的电灯的位置,须要用第三个数表示物体离地面的高度,即需第三个坐标z因此,只要知道电灯到地面的距离、到相邻的两个墙面的距离即可例如,若这个电灯在平面xOy上的射影的两
2、个坐标分别为4和5,到地面的距离为3,则可以用有序数组(4,5,3)确定这个电灯的位置(如图26-3)这样,仿照初中平面直角坐标系,就建立了空间直角坐标系Oxyz,从而确定了空间点的位置二、合作探究、精讲点拨1. 在前面研究的基础上,先由学生对空间直角坐标系予以抽象概括,然后由教师给出准确的定义从空间某一个定点O引三条互相垂直且有相同单位长度的数轴,这样就建立了空间直角坐标系Oxyz,点O叫作坐标原点,x轴、y轴、z轴叫作坐标轴,这三条坐标轴中每两条确定一个坐标平面,分别称为xO平面,yO平面,zOx平面教师进一步明确:(1)在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向
3、,若中指指向z轴的正方向则称这个坐标系为右手坐标系,课本中建立的坐标系都是右手坐标系(2)将空间直角坐标系Oxyz画在纸上时,x轴与y轴、x轴与z轴成135,而y轴垂直于z轴,y轴和z轴的单位长度相等,但x轴上的单位长度等于y轴和z轴上的单位长度的,这样,三条轴上的单位长度直观上大致相等2. 空间直角坐标系Oxyz中点的坐标思考1:在空间直角坐标系中,空间任意一点与有序数组(x,y,z)有什么样的对应关系?在学生充分讨论思考之后,教师明确:(1)过点A作三个平面分别垂直于x轴,y轴,z轴,它们与x轴、y轴、z轴分别交于点P,Q,R,点P,Q,R在相应数轴上的坐标依次为x,y,z,这样,对空间任
4、意点A,就定义了一个有序数组(x,y,z)(2)反之,对任意一个有序数组(x,y,z),按照刚才作图的相反顺序,在坐标轴上分别作出点P,Q,R,使它们在x轴、y轴、z轴上的坐标分别是x,y,z,再分别过这些点作垂直于各自所在的坐标轴的平面,这三个平面的交点就是所求的点A这样,在空间直角坐标系中,空间任意一点A与有序数组(x,y,z)之间就建立了一种一一对应关系:A(x,y,z)教师进一步指出:空间直角坐标系Oxyz中任意点A的坐标的概念对于空间任意点A,作点A在三条坐标轴上的射影,即经过点A作三个平面分别垂直于x轴、y轴和z轴,它们与x轴、y轴、z轴分别交于点P,Q,R,点P,Q,R在相应数轴
5、上的坐标依次为x,y,z,我们把有序数组(x,y,z)叫作点A的坐标,记为A(x,y,z)(如图26-4)思考2: (1)在空间直角坐标系中,坐标平面xOy,xOz,yOz上点的坐标有什么特点?(2)在空间直角坐标系中,x轴、y轴、z轴上点的坐标有什么特点?解:(1)xOy平面、xOz平面、yOz平面内的点的坐标分别形如(x,y,0),(x,0,z),(0,y,z)(2)x轴、y轴、z轴上点的坐标分别形如(x,0,0),(0,y,0),(0,0,z)三、典型例题例1、在空间直角坐标系Oxyz中,作出点P(5,4,6)注意:在分析中紧扣坐标定义,强调三个步骤,第一步从原点出发沿x轴正方向移动5个
6、单位,第二步沿与轴平行的方向向右移动4个单位,第三步沿与z轴平行的方向向上移动6个单位(如图26-5)变式练习: 已知长方体ABCDABCD的边长AB12,AD8,AA5,以这个长方体的顶点A为坐标原点,射线AB,AD,AA分别为x轴、y轴和z轴的正半轴,建立空间直角坐标系,求这个长方体各个顶点的坐标此题可以由学生口答,教师点评A(0,0,0),B(12,0,0),D(0,8,0),A(0,0,5),C(12,8,0),B(12,0,5),D(0,8,5),C(12,8,5)讨论:若以C点为原点,以射线CB,CD,CC方向分别为x,y,z轴的正半轴,建立空间直角坐标系,那么各顶点的坐标又是怎样
7、的呢?得出结论:建立不同的坐标系,所得的同一点的坐标也不同例2、结晶体的基本单位称为晶胞,如图是食盐晶胞的示意图(可看成是八个棱长为的小正方体堆积成的正方体),其中色点代表钠原子,黑点代表氯原子,如图,建立空间直角坐标系Oxyz后,试写出全部钠原子所在位置的坐标。把图中的钠原子分成下、中、上三层来写它们所在位置的坐标。下层原子全在xOy平面,它们所在位置的竖坐标全是0,所以下层的五个钠原子所在位置的坐标分别为:(0,0,0),(1,0,0),(1,1,0),(0,1,0),(,0),中层的四个钠原子所在位置的坐标分别为:(,0,),(1,),(,1, ),(0, )上层的五个钠原子所在位置的坐
8、标分别为:(0,0,1),(1,0,1),(1,1,1),(0,1,1),(,1)。在长方体OABCDABC中,OA3,OC4,OD2,写出D 、C、 A 、B四点关于平面xOy对称的坐标。因为D在z轴上,且OD2,它的竖坐标为2,它的横坐标与纵坐标都是零,所以D点的坐标是(0,0,2),点C在y轴上,且OC4,所以点C的坐标为(0,4,0),点A的坐标为(3,0,2),B的坐标为(3,4,2)。所以D点对称点的坐标是(0,0,-2),点C对称点的坐标为(0,4,0),点A对称点的坐标为(3,0,-2),B的对称点坐标为(3,4,-2)。四、反思总结:五、当堂检测:1. 在空间直角坐标系中,画
9、出下列各点:A(0,0,3),B(1,2,3),C(2,0,4),D(1,2,2)2. 已知:长方体ABCDABCD的边长AB12,AD8,AA7,以这个长方体的顶点B为坐标原点,射线AB,BC,BB分别为x轴、y轴和z轴的正半轴,建立空间直角坐标系,求这个长方体各个顶点的坐标3. 写出坐标平面yOz上yOz平分线上的点的坐标满足的条件【板书设计】一、空间直角坐标系二、例题例1变式1例2变式2 【作业布置】作业:P13824.3.1空间直角坐标系(导学案)课前预习学案1、预习目标1.用类比的数学思想方法探索空间直角坐标系的建立方法2.理解空间直角坐标系与点的坐标的意义,掌握由空间直角坐标系内的
10、点确定其坐标或由坐标确定其在空间直角坐标系内的点,认识空间直角坐标系中的点与坐标的关系2、预习内容1. 如何确定一个点在一条直线上的位置? 。2. 如何确定一个点在一个平面内的位置?3.从空间某一个定点O引三条互相垂直且有相同单位长度的数轴:x轴,y轴,z轴.这样就建立了 ,点O叫作 ,x轴、y轴、z轴叫作 ,这三条坐标轴中每两条确定一个坐标平面,分别称为 , , .4.在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,若中指指向z轴的正方向则称这个坐标系为 。5.空间任意点A的坐标可以用有序实数组(x,y,z)来表示,有序实数组(x,y,z)叫做点A在此 ,记作 。其中x
11、 叫做点A的 ,y叫做点A的 ,z叫做点A的 。6.空间两点间的距离公式 。三、提出疑惑1、 ;2、 ;3、 。课内探究学案一、学习目标1. 让学生用类比的数学思想方法探索空间直角坐标系的建立方法,进一步体会数学概念、方法产生和发展的过程学习重点:学习难点:二、学习过程 如何确定一个点在三维空间内的位置?思考3: 典型例题例1、 在空间直角坐标系Oxyz中,作出点P(5,4,6)在分析中紧扣坐标定义,第一步从原点出发沿x轴正方向移动5个单位,第二步沿与轴平行的方向向右移动4个单位,第三步沿与z轴平行的方向向上移动6个单位(如图26-5)在长方体OABCDABC中,OA3,OC4,OD反思总结:当堂检测:课后练习与提高1.在空间直角坐标系中,点,过点作平面的垂线,则的坐标为() 2.已知点,则点关于原点的对称点的坐标为() 3.坐标原点到下列各点的距离最小的是()4.在空间直角坐标系中,的所有点构成的图形是5.点关于平面的对称点是,关于平面的对称点是,关于轴的对称点是,关于轴的对称点是,关于轴的对称点是6. 求证:以,为顶点的三角形是等腰直角三角形
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1