1、从而可以得到n 个节点时的节点导纳矩阵方程组:Y11V1 Y12V2 L Y1nVn I1Y21V1 Y22V2 L Y2nVn I 2L(2-1)Yn1V1 Yn2V2 L YnnVn In由此可以得到 n 个节点导纳矩阵:它反映了网络的参数及接线情况,因此导纳矩阵可以看成是对电力网络电 气特性的一种数学抽象。由导纳短阵所联系的节点方程式是电力网络广泛应用 的一种数学模型。通过上面的讨论,可以看出节点导纳矩阵的有以下特点:(1)导纳矩阵的元素很容易根据网络接线图和支路参数直观地求得,形成 节点导纳矩阵的程序比较简单。(2)导纳矩阵为对称矩阵。由网络的互易特性易知 Yij Yji 。(3)导纳
2、矩阵是稀疏矩阵。它的对角线元素一般不为零,但在非对角线元 素中则存在不少零元素。在电力系统的接线图中,一般每个节点与平均不超过 34 个其他节点有直接的支路连接。因此,在导纳矩阵的非对角线元素中每行 仅有 34 个非零元素,其余的都是零元素,而且网络的规模越大,这种现象越 显著。节点导纳矩阵的形式可归纳如下:(1)导纳矩阵的阶数等于电力网络(2)导纳矩阵各行非对角元素中非零元素的个数等于对应节点所连得不接 地支路数。(3)导纳矩阵各对角元素,即节点的自导纳等于相应节点之间的支路导纳 之和。(4)导纳矩阵非对角元素,即节点之间的互导纳等于相应节点之间的支路 导纳的负值。2.2牛顿 -拉夫逊法2.
3、2.1牛顿- 拉夫逊法基本原理牛顿-拉夫逊法(简称牛顿法 )在数学上是求解非线性代数方程式的有效方 法。其要点是把非线性方程式的求解过程变成反复地对相应的线性方程式进行 求解的过程。即通常所称的逐次线性化过程。对于非线性代数方程组:在待求量 x 的某一个初始估计值 x(0) 附近,将上式展开成泰勒级数并略去二 阶及以上的高阶项,得到如下的经线性化的方程组:f (x(0) f (x(0) ) x(0) 0 (2-4)上式称之为牛顿法的修正方程式。由此可以求得第一次迭代的修正量x(0) f (x(0) ) 1 f ( x(0) ) (2-5)将 x(0) 和 x(0) 相加,得到变量的第一次改进值
4、 x(1) 。接着就从 x(1) 出发,重 复上述计算过程。因此从一定的初值 x(0) 出发,应用牛顿法求解的迭代格式为: (k) (k) (k)f (x ) x f(x ) (2-6)上两式中: f (x)是函数 f (x) 对于变量 x 的一阶偏导数矩阵,即雅可比矩 阵 J ; k 为迭代次数。由上式可见,牛顿法的核心便是反复形式并求解修正方程式。牛顿法当初 始估计值 x(0) 和方程的精确解足够接近时,收敛速度非常快,具有平方收敛特 性。牛顿潮流算法突出的优点是收敛速度快,若选择到一个较好的初值,算法 将具有平方收敛特性,一般迭代 45 次便可以收敛到一个非常精确的解。而且 其迭代次数与
5、所计算网络的规模基本无关。牛顿法也具有良好的收敛可靠性, 对于对以节点导纳矩阵为基础的高斯法呈病态的系统,牛顿法也能可靠收敛。 牛顿法所需的内存量及每次迭代所需时间均较高斯法多。牛顿法的可靠收敛取决于有一个良好的启动初值。如果初值选择不当,算法有可能根本不收敛或收敛到一个无法运行的节点上。对于正常运行的系统,各节点电压一般均在额定值附近,偏移不会太大,并且各节点间的相位角差也 不大,所以对各节点可以采用统一的电压初值 (也称为平直电压 ) ,如假定:U i (0) 1 i(0) 0 或 ei(0) 1 fi (0) 0 (i q1,2,L ,n;i s) (2-8)这样一般能得到满意的结果。但
6、若系统因无功紧张或其它原因导致电压质 量很差或有重载线路而节点间角差很大时,仍用上述初始电压就有可能出现问 题。解决这个问题的办法可以用高斯法迭代 12 次,以此迭代结果作为牛顿法 的初值。也可以先用直流法潮流求解一次以求得一个较好的角度初值,然后转 入牛顿法迭代。2.2.2牛顿 - 拉夫逊法潮流求解过程介绍以下讨论的是用直角坐标形式的牛顿拉夫逊法潮流的求解过程。当采用 直角坐标时,潮流问题的待求量为各节点电压的实部和虚部两个分量 e1, f 1,e2, f 2.en, f n由于平衡节点的电压向量是给定的,因此待求两共 2(n-1) 需要 2(n-1) 个方程式。事实上,除了平衡节点的功率方
7、程式在迭代过程中没有约 束作用以外,其余每个节点都可以列出两个方程式。对 PQ节点来说, P is和 Q 是给定的,因而可以写出Pi pis ei(Gij ej Bij f j) f j j i ji (Gij fiBij ej) 0(2-Qi Qis fi (Gij ej Bij f j) ej ji(Gij fjij Bij ej) 09)对 PV节点来说,给定量是 Pis和V is ,因此可以列出Pi Pis eij(Gijej Bij f j ) f ii j i(Gij f j(2-10 )2222Vi2 Vi2s (ei2 f i) 0 求解过程大致可以分为以下步骤: (1)形成节
8、点导纳矩阵; (2)将各节点电压设初值 U3)将节点初值代入相关求式,求出修正方程式的常数项向量;(4)将节点电压初值代入求式,求出雅可比矩阵元素;(5)求解修正方程,求修正向量;(6)求取节点电压的新值;(7)检查是否收敛,如不收敛,则以各节点电压的新值作为初值自第 3 步重新开始进行狭义次迭代,否则转入下一步;8)计算支路功率分布, PV节点无功功率和平衡节点注入功率 以直角坐标系形式表示:1 迭代推算式采用直角坐标时 , 节点电压相量及复数导纳可表示为 :V&i ei jf ii i i (2-11)Yij Gij jBij将以上二关系式代入上式中 , 展开并分开实部和虚部 ; 假定系统
9、中的第1,2, L ,m号为 PQ节点,第 m+1,m+2,L ,n-1 为PV节点,根据节点性质的 不同 , 得到如下迭代推算式 : 于 PQ节点 对于 PV 节点对于平衡节点平衡节点只设一个 ,电压为已知 ,不参见迭代 ,其电压为:Vn en jf n (2-14)2 修正方程两组迭代式中包括 2(n-1) 个方程 . 选定电压初值及变量修正量符号之后代入, 并将其按泰勒级数展开 ,略去 ei, f i二次方程及以后各项 , 得到修正方程如下 :WJU(2-15)P1e1Q1f1M其中,Pm ;emQmU f mPm 1e m 1U2m1f m 1Pn 1en 1U 2 n 1f n 1f
10、mem 1fm1fn 1PmU2m1U m 1fn1U2n1(2-16)3 雅可比矩阵各元素的算式式(2-12) 中 , 雅可比矩阵中的各元素可通过对式 (2-8) 和(2-9) 进行偏导而 求得.当 j i时, 雅可比矩阵中非对角元素为ej当 j i 时 , 雅可比矩阵中对角元素为由式(2-13) 和(2-18) 看出, 雅可比矩阵的特点:1 矩阵中各元素是节点电压的函数 , 在迭代过程中 , 这些元素随着节点电压 的变化而变化;2 导纳矩阵中的某些非对角元素为零时 , 雅可比矩阵中对应的元素也是为零 若Yij 0,则必有 Jij 0;雅可比矩阵各元素的表示如下:3分析计算1.根据给定的运行
11、条件,确定图中所示电力系统潮流计算时各节点的类型 和待求量根据图中可以看出各节点的类型和待求量分别为:节点 1: PQ节点 待求量: U,节点 2: PV 节点 待求量: Q,节点 3:平衡节点 待求量: P,Q2.求节点导纳矩阵 YY22 y12 y23 1.3 j7Y33y23 y13 1.55 j6.5Y21Y120.5j3Y32Y230.8j4Y31Y130.75j2.5所以节点导纳矩阵为:1.25j5.5Y 0.51.3j71.55j6.53.潮流方程或功率方程的表达式因为对 n 个节点的网络,电力系统的潮流方程一般形式是:Pi jQ i n . (i=1,2 , n)* Yij V
12、 j其中Pi = PGi - PLdi, Qi = QGi - QLdi , 即PQ分别为节点的有功功率无功功率。所以代入得潮流方程:1)修正方程计算 1、2 节点的不平衡量 Pi、 Qi 和 Vi2 0 2 0 2V22 0 V2S V20 0 节点 3 是平衡节点,其电压 Vi ei jfi 是给定的,故不参加迭代。根据给定的容许误差 10 5 ,按收敛判据 max Pi k , Qi k , Vi2 k 进行校验,以上节点 1、2 的不平衡量都未满足收敛条件,于是继续以下计算。修正方程式为 W J V (n=3)W P12TP2 V22 TV e1e2 f2 Te2 f 2J e1J P
13、2P2V22以上雅可比矩阵 J 中的各元素值是通过求偏导数获得的,对 PQ节点来说,Pis和Qis是给定的,因而可以写出Pi pis ei (Gijej Bijf j) f j (Gijf j Bijej) 0ji jiQi Qis f i (Gijej Bij f j ) ej (Gij f j Bijej ) 0对 PV节点来说,给定量是 Pis和V is ,因此可以列出Pi Pis ei (G ijej Bij f j) f i (Gij f j Bijej) 0V i2 Vei2s ( i2 f i ) 0当 j i 时 , 雅可比矩阵中非对角元素为当 j i 时 , 雅可比矩阵中对角
14、元素为 :i ei(Gijejj1Bijfj)GiieiBiifiPi fjn(GijfjBijej)Gii fiBiieiQi ei(Gij fjQi fj(Gij ejBii fUi2 ej2eiUi22fifi代入数值后的修正方程为5.53217e2f2求解修正方程得e1 0.25470.3611e2 00.10152)收敛条件一轮迭代结束,根据收敛条件收敛判据 max Pi k , Qik , Vi2 k ,若等式成立,结果收敛,迭代结束,计算平衡节点的功率和线路潮流计算,否则继 续计算雅可比矩阵,解修正方程,直到满足收敛判据。4结果分析给定节点电压初值 e10 e20 e30 1.0
15、, f10 f20 f30 0, 经过四次笔算 迭代过程后,得到节点电压和不平衡功率的变化情况分别于表 4.1 和表 4.2 所 示(取 10 5 ):迭代 计数 k节点电压?V 1 e1 jf 1V 2 e2 jf 2V 3 e3 jf 30.7453-j0.36111-j0.10150.4131-j0.35100.9901-j0.14791.2973-j0.37971.0083-j0.018540.8217-j0.36440.9986-j0.0880表 4.1 迭代过程中节点电压变化情况节点不平衡量-2-1-0.1482-0.9769-0.0726-0.0103-0.0902-0.6071
16、-0.0480-0.0022-0.6272-4.3251-0.3610-0.0171-0.1816-1.2510-0.1042-0.0049表 4.2 迭代过程中节点不平衡量变化情况结果值与我的小组同学基本一样,也在预期之内。得到了基本一致的结 果。并且确定牛顿法具有很好的二次收敛性,是求解多元非线性方程的正确算 法。5总结这次的电力系统分析课程设计让我对平时所学的专业知识有了更深刻更具体的 了解,明白了理论知识必须与实践相结合才能更好的发挥作用。在不停的翻书 上网查资料的过程中,我积累了大量的导纳矩阵和潮流计算以及电力系统的知 识,全面透彻的了解了相关知识的应用。使自己的知识更加牢固,并且有了更 深的理解。通过这次毕业设计,我才明白学习是一个长期积累的过程,在以后的工 作、生活中都应该不断的学习,努力提高自己的知识和综合素质。总之,万事 开头难,知识必须通过应用才能实现其价值!有些东西以为学会了,但真正到用的时候才发现是两回事,所以我认为只有到真正会用的时候才是真的学会参考资料1何仰赞 温増银. 电力系统分析(第三版) . 华中科技大学出版社2吴国炎. 电力系统分析 . 浙江大学出版社3华智明 岳湖山. 电力系统稳态计算 .重庆大学出版社
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1