1、1、2、平面图形与立体图形的关系:【拓展训练】1.下列几种图形:长方形;梯形;正方体;圆柱;圆锥;球.其中属于立体图形的是( )A. ;B. ;C. ;D. 【总结反思】:课题4.1.1几何图形(2)1.经历从不同方向观察物体的活动过程,初步体会从不同方向观察同一物体可能看到不一样的结果,了解为什么要从不同方向看;2.能画出从不同方向看一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简单组合得到的平面图形;【学习重点】:识别一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简单组合得到的平面图形【学习难点】:画出从正面、左面、上面看正方体及简单组合体的平面图形多媒体演示庐山景观,请学生背诵苏
2、东坡题西林壁并说说诗中意境。横看成岭侧成峰,远近高低各不同。不识庐山真面目,只缘身在此山中。从数学的角度来理解是什么意思呢?1.说一说:分别从正面、左面、上面观察乒乓球、粉笔盒、茶叶盒,各能得到什么平面图形?(出示实物)2.画一画:长方体、圆锥分别从正面、左面、上面观察,各能得到什么图形?试着画一画(出示实物)这样,我们将立体图形转化成了平面图形3.探究活动1:从正面、左面、上面观察得到的平面图形你能画出来吗?小组合作学习,动手画一画,并进行展示探究:分别从正面、左面、上面观察课本119页图4.1-8这个图形,分别画出得到的平面图形。课本120页练习11本节课我们主要学习了什么?2. 本节课我
3、们有哪些收获?1. 如图是由七个相同的小正方体堆成的物体,从上面看这个物体的图是( )2右图是由几个小立方块所搭几何体的俯视图,请画出这个几何体的主视图和左视图。课题4.1.1几何图形(3)1.能直观认识立体图形和展开图,了解研究立体图形方法。2.通过观察和动手操作,经历和体验平面图形和立体图形相互转换的过程,培养动手操作能力,初步建立空间观念,发展几何直觉。了解基本几何体与其展开图之间的关系,体会一个立体按照不同方式展开可得到不同的平面展开图。正确判断哪些平面图形可以折叠为立体图形;某个立体图形的展开图可以是哪些平面图形我们把一些像墨水瓶盒、粉笔盒这样的纸盒沿它的表面适当剪开,可以展平成平面
4、图形。这样的平面图形叫做相应立体图形的展开图。你知道长方体、圆柱、圆锥和三棱柱的展开图是什么样子的吗?想象一下。(一)、立体图形的展开1、试一试:在你想象的基础上,请将准备好的长方体、圆柱、圆锥和三棱柱的纸盒剪开展平,看看与下面的展开图一样吗?圆柱 圆锥 三棱柱 长方体请你指出上面展开图各部分与几何体的哪一部分相对应?2、剪一剪、画一画:动手把一个立方体的包装盒沿一边剪开,铺平,看看它的展开图由哪些平面图形组成;再把展开的纸板复原,你有什么体会? 再将所有的展开图画出来,以上画出了部分了展开图,除此之外还有5种,共有11种, 请你画出其余5种。(二)、立体图形的折叠下图是一些立体图形的展开图,
5、用它们能围成怎样的立体图形?凭想象回答,回答不出来的,就把它画在纸片上,剪下来折叠。做一做:下面是一些常见几何体的展开图,你能正确说出这些几何体的名字么? 课本121页练习21.我知道了什么?2.我学会了什么?3.我发现了什么?1.下列图形中,不是正方体的表面展开图的是( )A B C D2. 一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是( )A和 B谐 C沾 D益课题 4.1.2点、线、面、体(1)了解几何体、平面和曲面的意义,能正确判定围成几何体的面是平面还是曲面; (2)了解几何图形构成的基本元素是点、线、面、体及其关系,能正确判定由点、面、体经过运动变化形成的简单的几
6、何图形;正确判定围成立体图形的面是平面还是曲面,探索点、线、面、体之间的关系。探索点、线、面、体运动变化后形成的图形。 一、温故知新 1出示一个长方体模型,请同学们认真观察。 2回答问题:这个长方体有几个面?面与面相交成了几条线?线与线相交成几个 点? 二、自主探究 1经过学生的独立思考,然后在小组中进行交流,在小组讨论中,评价并修正自己的结论。(教师进行巡视,及时给予指导,教师对学生分布的答案作鼓励性评价)。 2几何体的概念(1)长方体是一个几何体,我们还学过哪些几何体?_;(2)观察长方体和圆柱体,说出围成这两个几何体的面有哪些?这些面有什么区别? 3面的分类 通过对上面问题的解决,得出面
7、的分类:_面和_面。 面与面相交成线,线有_线和_线;线与线相交成_; 4. 点、线、面、体 教师指导学生看课本第121122页内容,观察图片能发现什么结论?点、线、面、体的关系:点动成_,线动成_,面动成_。请你再举出生活中的一些实例: 5点、线、面、体与几何图形关系 指导学生阅读课本第123页内容,总结出点、线、面、体与几何图形的关系 几何图形都是由_组成的,_是构成图形的基本元素。【课堂练习】 课本第122页练习1、2;【拓展训练】: 1人在雪地上走,他的脚印形成一条_,这说明了_的数学原理; 2体是由_围成的,面和面相交形成_,线和线相交形成_; 3点动成_,线动成_,面动成_; 4将
8、三角形绕直线L旋转一周,可以得到如下图所示立体图形的是( ) A B C D课题 4.2直线、射线、线段(1)【学习目标】: 1.能在现实情境中,经历画图的数学活动过程,理解并掌握直线的性质,能用几何语言描述直线性质; 2.会用字母表示直线、射线、线段,会根据语言描述画出图形; 理解并掌握直线性质,会用字母表示图形和根据语言描述画出图形;1在小学已经学过了直线、射线、线段请你画出一条直线、一条射线、一条线段? 直线 射线 线段2填写下列表格:端点个数 延伸方向能否度量线段射线直线1、直线的性质(1)如果你想将一根细木条固定在墙上,至少需要几个钉子?操作一下,试试看。 答:(2)经过一个已知点的
9、直线,可以画多少条直线?请画图说明。 O (3)经过两个已知点画直线,可以画多少条直线?请画图试试。 答: A B猜想:如果将细木条抽象成直线,将钉子抽象为点,你可以得到什么结论?直线的基本性质:经过两点有 条直线,并且 条直线;简述为: 举例说明直线的性质在日常生活中的应用:(1) 在挂窗帘时,只要在两边钉两颗钉子扯上线即可,这是因为 (2)建筑工人在砌墙时拉参照线,木工师傅锯木板时,用墨盒弹墨线,都是根据 (3)你还能从生活中举出应用直线的基本性质的例子吗?试试看:2、直线有两种表示方法:用一个小写字母表示;用两个大写字母表示。平面上一个点与一条直线的位置有什么关系?点在直线上;点在直线外
10、。当两条直线有一个共公点时,我们就称这两条直线相交,这个公共点叫做它们的交点。 3、射线和线段的表示方法: 如图。显然,射线和线段都是直线的一部分。图中的线段记作线段AB或线段a;图中的射线记作射线OA或射线m。用两个大写字母表示射线时,表示端点的字母一定要写在前面。直线、射线和线段有什么联系和区别?1下列给线段取名正确的是 ( ) A线段M B.线段m C.线段Mm D.线段mn 2.如图,若射线AB上有一点C,下列与射线AB是同一条射线的是 ( )A B C A.射线BA B.射线AC C.射线BC D.射线CB 3.下列语句中正确的个数有 ( ) 直线MN与直线NM是同一条直线 射线AB
11、与射线BA是同一条射线 线段PQ与线段QP是同一条线段直线上一点把这条直线分成的两部分都是射线.A.1个 B.2个 C.3个 D.4个4.课本129页练习通过本节课的学习你有什么收获?1.如图,线段AB上有两点C、D,则共有 条线段。A C D B2变形题:往返于甲、乙两地的客车中途要停靠三个车站,有多少种不同的票价?要准备多少种不同的车票?课题 4.2直线、射线、线段(2)1、会用尺规画一条线段等于已知线段;2、会比较两条线段的长短;3、理解线段中点的概念,了解“两点之间,线段最短”的性质。线段的中点概念,“两点之间,线段最短”的性质是重点;画一条线段等于已知线段是难点。一、温故知新1、过A
12、、B、C三点作直线,小明说有三条,小颖说有一条,小林说不是一条就是三条,你认为 的说法是对的。二、自主学习问题:现有一根长木棒,如何从它上面截下一段,使截下的木棒等于另一根木棒的长?上面的实际问题可以转化为下面的数学问题:已知线段a,画一条线段等于已知线段。1.作一条线段等于已知线段现在我们来解决这个问题。作法:(1)作射线AM (2)在AM上截取AB= a。则线段AB为所求。应用:已知线段a、b,求作线段AB=a+b。解:(1)作射线AM; (2)在AM上顺次截取AC=a,CB= b。 则AB= a+b为所求。C作线段AB=a-b。2、比较两条线段的长短两条线段可能相等,也可能不相等,那么怎
13、样比较两条线段的长短呢?我们先来回答下面的问题。怎样比较两个同学的身高?一是用尺子测量;二是站在一起比(脚在同一高度)。如果把两个同学看成两条线段,那么比较两条线段就有两种方法。(1)度量法:用刻度尺分别量出两条线段的长度从而进行比较。( 2)把一条线段移到另一条线段上,使一端对齐,从而进行比较,我们称为叠合法。(如图) ABCD ABCD AB=CD3、线段的中点及等分点如图(1),点M把线段AB分成相等的两条线段AM与BM,点M叫做线段AB的中点;记作AM=MB或AM=MB=1/2AB或2AM=2MB=AB。()如图(2),点M、N把线段AB分成相等的三段AM、MN、NB,点M、N叫做线段
14、AB的三等分点。类似地,还有四等分点,等等。 4、线段的性质请同学们思考课本131页的思考?结论:两点所连的线中, 简单地说成:_你能举出这条性质在生活中的一些应用吗?两点间的距离的定义:距离是用“数”来度量的,它是线段的长度,而不是线段本身。1、课本131页练习1、22、在直线上顺次取A、B、C三点,使 AB=4,BC=3,点O是线段AC的中点,则线段OB的长是 A、2 B、1.5 C、0.5 D、3.53、已知线段AB5,C是直线AB上一点,若BC=2,则线段AC的长为 1、画一条线段等于一条已知线段。2、怎样比较两条线段的长短?3、线段的性质是什么?4、什么是两点间的距离?1、把弯曲的河
15、道改直后,缩短了河道的长度,这是因为 ;2、已知,如图,AB16,C是BC的中点,且AC=10,D是AC的中点,E是BC的中点,求线段DE的长。课题 4.3.1角1、在现实情景中,理解角的概念,掌握角的表示方法;2、认识角的度量单位:度、分、秒,学会进行简单的换算和角度的计算。角的表示和角度的计算是重点;角的适当表示是难点。观察课本136页图4.3.1;思考问题:如图,时钟的时针与分针,棱锥相交的两条棱,直尺相交的两条边,给我们什么平面图形的形象?1角的定义1: 有_的两条射线组成的图形叫做角。这个公共端点是角的_,这两条射线是角的_。2 角的表示:用三个大写字母表示,表示顶点的字母写在中间:
16、AOB;用一个大写字母表示:O;用一个希腊字母表示:;用一个阿拉伯数学表示:1。用适当的方法表示下图中的每个角:演示:把一条射线由OA的位置绕点O旋转到OB的位置,如图(1)射线开始的位置OA与旋转后的位置OB组成了什么图形?角。3角的定义2: 角也可以看作由一条射线绕着它的端点旋转面形成的图形。如图(2),当射线旋转到起始位置OA与终止位置OB在一条直线上时,形成_角;如图(3),继续旋转,OB与OA重合时,又形成_角;平角是一条直线吗?周角是一条射线吗?为什么?4、角的度量阅读课本137页;填空:1周角=_0 , 1平角=_0;10=_, 1=_;如的度数是48度56分37秒,记作=480
17、5637。度、分、秒是常用的角的度量单位,以度、分、秒为单位的角的度量制,叫做角度制,角的度、分、秒与时间的时、分、秒一样,都是60进制,计算时,借1当成60,满60进1。例 计算:(1)53028+47035; (2)17027+3050;(学生自己完成)课本138页1、2。1、什么是角、平角、周角?2、怎么表示角?3、角的度量单位是什么?它们是如何换算的?1、(37.145)0 度 分 秒;9803018 度。2、下午2时30分,钟表中时针与分针的夹角为 A、900 B、1050 C、1200 D、13503、如图,A、B、C在一直线上,已知53,237;CD与CE垂直吗?课题 4.3.2
18、角的比较与运算1、会比较两个角的大小,能分析图中角的和差关系;2、理解角平分线的概念,会画角平分线。角的大小比较和角平分线的概念是重点;从图形中观察角的和差关系是难点。回顾线段大小的比较,,怎样比较图中线段AB、BC、CA的长短?(1) 度量法;(2)叠合法。ABACBC那么怎样比较A、 B、 C的大小呢?1、比较角的大小用量角器量出角的度数,然后比较它们的大小。(2)叠合法:把两个角叠合在一起比较大小。教师演示:(1)AOBAOB;(2)AOB=AOB;(3)AOBAOB。2、认识角的和差如图,图中共有几个角?它们之间有什么关系?图中共有3个角:AOB、AOC、BOC。它们的关系是:AOC=
19、AOB+BOC;BOC=AOCAOB;AOB=AOCBOC3、用三角板拼角借助三角尺画出150,750的角。一副三角板的各个角分别是多少度?学生尝试画角。你还能画出哪些角?有什么规律吗?还能画出_规律是:凡是 的倍数的角都能画出。4、角平分线在一张纸上画出一个角并剪下,将这个角对折,使其两边重合想想看,折痕与角两边所成的两个角的大小有什么关系?如图(1)角的平分线:从一个角的_出发,把这个角分成_的两个角的射线,叫做这个角的平分线。 类似地,还有角的三等分线等。如图(2)中的OB、OC。OB是AOC的一平分线,可以记作:AOC=2AOB=2BOC或AOB=BOC= 。5、例题学习例1 如图,O
20、是直线AB上一点,AOC=53017,求 BOC的度数。例2 把一个周角7等分,每一份是多少度的角(精确到分)课本140-141页1、2、3。1、角的大小比较的方法和角的和差关系;2、用一副三角板画角;3、角的平分线及表示。1、如图,O为直线AB上一点,射线OD、OE分别平分AOC、BOC,求DOE的度数。课题:余角和补角(1)【学习目标】在具体的现实情境中,认识一个角的余角和补角;【重点难点】正确求出一个角的余角和补角。(1) 在一副三角板中同一块三角板的两个锐角和等于多少度?(2) 如图1,已知1=61,2=29,那么1+2= 。(3) 如 图 2,已知点A、O、B在一直线上 ,COD=9
21、0D9021O图 1图 21.互为余角的定义:(1) 如图3,已知1=62,2=118,那么 1+2(2) 如图4,A、O、B在同一直线上,1+2= 2.互为补角的定义:问题1:以上定义中的“互为”是什么意思?问题2:若 1+2 +3 =180 ,那么1、2、3互为补角吗?3.新知应用:例1:若一个角的补角等于它的余角4倍,求这个角的度数。例2:如图,AOCCOB90,DOE90,A、O、B三点在一直线上(1)写出COE的余角,AOE的补角;(2)找出图中一对相等的角,并说明理由;课本141页练习1、2、3;1、一个角的余角比它的补角的还少,求这个角的度数。2、若和互余,且: =7:2,求、的度数。余角和补角(2)1、掌握余角和补角的性质。2、了解方位角,能确定具体物体的方位。【重点难点】掌握余角和补角的性质;方位角的应用;1.70的余角是 ,补角是 ;2.( )的它的余角是 ,它的补角是 ;1.探究补角的性质:例3、如图, 1与2互补,3与4互补, 1= 3,那么2与4相等吗?分析:(1)1与2互补,2等于什么?2=1800 - ,3与4互补,4等于什么? 4=1800 - 。(2)当1= 3时,2与4有什么关系?2=4(等量减等量,差相等)上面的结论,用文字怎么叙述?补角的性质:等角的 相等。2探究余角的性质:如图1
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1