1、教学目标:1、 理解二元一次方程(组)及二元一次方程(组)的解的概念;2、能判断一个方程组是否是二元一次方程组3、学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程(组)的解;4、 学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示。教学重点、难点:重点:二元一次方程(组)的意义及二元一次方程(组)的解的概念1、二元一次方程组节含义2、把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。教学过程:一、创设情境,引入新知篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得一分,某队想在全部22场比赛中得到40分,
2、这个对胜负场数分别是多少?法一:可列一元一次方程来解(详细过程略)法二:可否设胜负场数分别为x场、y场,那么x、y应同时满足以下两个方程x+y=22 2x+y=40二、探索新知1)二元一次方程的意义这两个方程是我们学过的一元一次方程吗?由一名学生来阐述什么叫做一元一次方程,它的特征有哪些?含有一个未知数并且未知数的次数为一次的整式方程叫一元一次方程,它的特征有三个:含有一个未知数;未知数的次数是一次;方程两边都是整式。与一元一次方程的特征作比较,上述两个方程具有怎样的特征呢?含有两个未知数;未知项的次数是一次;得出概念:含有两个未知数,并且未知项的次数都是一次的整式方程叫做二元一次方程(关键词
3、两个未知数,未知项的次数,一次,整式方程)练习:请你判断下列式子是否为二元一次方程?(1) x-2y=8;(2) x2+y=0;(3) x=2/y+1;(4) a+1/2b;(5) xy+y=2;(6)x/3 +2y=0.2)二元一次方程的解以x+y=22为例探索满足此方程的未知数值有无数对,从而得出二元一次方程的解的概念:使二元一次方程两边的值相等的一对未知数的值叫做二元一次方程的一个解同时强调二元一次方程解的书写格式 , 一般地一个二元一次方程有无数解(同时探索求解方法:用含一个未知数的代数式表示另一未知数)此二元一次方程的正整数解有,。共21个。3)二元一次方程组上在一起成为述问题中,x
4、、y必须同时满足两个方程x+y=22 和 2x+y=40,把这两个方程合写含有两个未知数且未知项的次数均为一两个整式方程合在一起,就组成二元一次方程组。比如 ,等都是二元一次方程组,但 等不是二元一次方程组(你们知道为什么吗?)4)二元一次方程组的解上述问题通过解一元一次方程可知x=18 22-x=4,即既满足方程x+y=22又满足方程2x+y=40,所以我们就说是方程组的解。使二元一次方程组的两个方程左、右两边的值都相等的两个未知数的值,叫做二元一次方程组的解例题 判断下列各组未知数的知是不是二元一次方程组的解(1)(2)(3)一般地,一个二元一次方程组只有一个解。三、尝试反馈,巩固知识1)
5、写出二元一次方程5xy=2的五个解2)已知二元一次方程3x-y=10,用x代数式表示y=;当x=6时,y =。 用含y的代数式表示x=;当y=2时,x=3)3x+y=10自然数解有4)中为方程组的解的是5)书上94页练习题6)书上95页习题8.1第1题四、课堂小结,思想升华我们今天学习了二元一次方程,二元一次方程组的概念,二元一次方程的解,二元一次方程组的解的定义和判断方法,学习了二元一次方程特殊解的求法,学会了怎样用含一个未知数的代数式表示另一未知数的方法。但是,我们也遇到了一个困惑,那就是二元一次方程组的解我们是用尝试法来判断的,是否有更简洁的方法来求它的解呢?这就是后几节课我们要学习的内
6、容。五、作业;必做95页2、3、4 选作5第二课时 二元一次方程组的解法代入消元法教学内容人教版七年级下第八章二元一次方程组第二节教学目标1、会用代入法解二元一次方程组2、初步体会解二元一次方程组的基本思想消元3、通过研究解决问题的方法,培养学生合作交流意识与探索精神教学重点、难点用代入法解二元一次方程组探索如何用代入法将二元转化为一元的消元过程教学过程一、提出问题,探究方法问题:篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得一分,某队想在全部22场比赛中得到40分,这个队胜负场数分别是多少?可列一元一次方程来解 法二:可列二元一次方程组来解解:设这个队胜了x场, 解:设这个队胜
7、场数分别为x场,则负了(22-x)场,由题意的得 负了y场,由题意得2x+(22-x)=40(以下略)这里所用的是是将未知数的个数有多化少,逐一解决的想法消元思想。具体是由x+y=22得y=22-x,再把y=22-x代人2x+y=40得2x+(22-x)=40,这样就消掉了一个未知数y,把原来的二元一次方程组就化为了我们熟悉的一元一次方程,这就是代入消元法,简称代入法关键:用含一个未知数的代数式表示另一未知数(1)5x-3y=x+2y (2)2(3y-3)=6x+4 (3)(4)二、代入法解二元一次方程组的一般步骤解:由(1)得y=22-x (3) 。选择变形把(3)代入(2)得2x+(22-
8、x)=40 。代入消元解得x=18 。解一元方程把x=18代入(3)得y=4 。返代求值 。规范写解师生一起归纳代入消元法的一般步骤并强调注意事项:选择一个系数较为简单的方程变形,将变形后的式子代入另一个方程得一个一元一次方程,解这个一元一次方程(不需详细步骤),将一元一次方程的解代入(3)求出另一未知数的值(代入(1)(2)也可,但代入(3)往往要简便些),然后规范写解。三、尝试练习1、用代入法解方程组(1)(5)(教师可示范三题,学生练习两题,然后师生共评)2、例2(书上97页例2)3、学生尝试练习书上99页3、4题四、归纳小结本节内容、方法、注意事项五、作业 必做103页习题8.2第2题
9、、4题 选做6、7题第三课时 二元一次方程组的解法加减消元法1、会用加减法解二元一次方程组2、进一步体会解二元一次方程组的基本思想消元用加减法解二元一次方程组探索如何用加减法将二元转化为一元的消元过程观察下列方程组中同一未知数系数之间的关系并思考新的消元方法 因为两个方程中y的系数相同,故由(1)-(2)可消y(也可由(2)-(1)消y) 因为两个方程中y的系数互为相反数,故由(1)+(2)可消y归纳:两个二元一次方程中同一未知数的系数互为相反数或相同,把这两个方程两边分别相加或相减,就可消去这个未知数,得到一个一元一次方程,这种方法叫加减消元法,简称加减法因为方程组中y的系数成整数倍关系,故
10、可由(1)+(2)2消y首先要将方程组中的同一未知数系数化成相同或互为相反数,故可由(1)3+(2)2消y,也可可由(1)5-(2)3消x.二、加减法的一般步骤详细板书解上述5个方程组的过程,然后师生一起归纳加减法的一般步骤:观察方程组中同一未知数系数之间的关系,若有同一未知数的系数相同或互为相反数可直接把这两个方程两边分别相加或相减,就可消去一个未知数,得到一个一元一次方程,若没有同一未知数相同或互为相反数,可把方程组先变形化成有同一未知数(一般选择系数较为简单的那个未知数)相同或互为相反数的情形,再用加减法消去一个未知数化成一元一次方程,然后解一元一次方程,再返代求另一未知数的值,最后规范
11、写解。即变形加减消元解一元方程返代求值规范写解1、用加减法解下列方程组思考:如何解下列方程组 (6) 2、书上101页例4讲评3、练习102页练习题2、3五、作业 必做103也习题8.2第3题、8题 选做9题第四课时二元一次方程组的解法道南中学毛治平(中学数学高级)1、会合理选择方法解二元一次方程组3、通过研究解决问题的方法,培养学生观察分析能力、逆向思维能力和探索精神选择恰当方法解二元一次方程组方程组特点的观察,解法的选择一、复习引入1、解二元一次方程组有哪几种方法?2、观察下列方程组特点,选择合理方法解下列方程组(代入法)(2)(加减法)(加减法)(4)(整体代入法、加减法均可)二、新课1
12、、师生一道探讨上述方程组的解法,然后归纳得出:当方程组中某一个未知数的系数绝对值是1或一个方程的常数项为零时,用代入法较方便;当两个方程中,同一个未知数的系数绝对值相等或成整倍数时,用加减法较方便。2、 用适当方法解下列各方程组:(加减法、代入法均可)(先整理,再选择方法)(先整理,再选择)(整体考虑)比较复杂的方程组,可先整理,再选择恰当解法。对于特殊的方程组,可采取特殊的一些解法:整体代入、整体考虑等4、已知x+y+(x-y+3)20,则x、y的值分别是5、若方程组的解是方程2x2+2mxy+y216的一个解,则m的值是6、思考题:若方程组无解,则a,c的取值情况是,若有无数个解,则a,c
13、的取值情况是。(此题要讲清理由并由此得出一般性的结论)三、归纳小结除题目明确要求解法外,我们要能做到熟练而灵活地解方程组,就必须要仔细观察方程组特点,选择恰当的处理方式和解法,这样做不但较为简便,快捷,还能减少运算量,确保准确性,这还需要同学们在平时的学习中精心思考、不断总结、用心领悟!四、作业必做题1、解下列方程组2、对于代数式ax+by-2,当x=2,y=3时值为8,当x=-2,y=3时值为0,求x=4,y=5时代数式的值选做题(a为常数)2、当x=2和x=3时二次三项式的值均为0,求p、q的值第五、六课时 实际问题与二元一次方程组人教版七年级下第八章二元一次方程组第三节1、使学生能利用列
14、二元一次方程组解决有关实际问题2、使学生通过问题解决掌握列方程组解应用题的一般步骤。3、培养学生分析问题、解决问题的能力与合作意识、探索精神利用列二元一次方程组解决有关实际问题方程思想与分析、解决问题能力的培养一、引入1、在上学期我们经历了列一元一次方程解决有关实际问题,一般步骤有哪些?需注意哪些问题?2、(书上105页探索1)养牛场原有大牛30只,小牛15只,每天约用饲料675,后来又购进大牛12只,小牛5只,这时每天约用饲料940.饲养员李大叔估计每只大牛1天约需饲料1820,每只小牛1天约需饲料78。你能通过计算检验他的估计吗?方法一:列一元一次方程来解方法二:列二元一次方程组来解(通过
15、板书对比两种解决办法的简便程度)1、由上得出:一般说来,列方程组比列一次方程解应用题要简便一些。2、(书上106页探索2)甲乙两种作物的单位面积产量比为1:1.5,现有一长方形地长200米,宽100米,怎样划分为两块小长方形地,分种甲乙作物,使它们的总产量之比为3:4(结果取整数)?(有两种方法)3、(书上106页探索3)4、归纳列列二元一次方程组的一般步骤及注意事项:仔细审题后设恰当的未知数(有时需设间接未知数),找出题中涉及全局两个相等关系列两个二元一次方程组成方程组,解出这个方程组,再检验解的合理性,最后作答。简而言之就是审找、列解验答书上108页习题8.3第1、2、3题四、归纳小结列二
16、元一次方程组的一般步骤及注意事项五、作业必做书上108页习题8.3第4、5、6、7选作书上108页习题8.3第8、9第七、八课时 三元一次方程组及解法举例人教版七年级下第八章二元一次方程组第四节1、使学生了解三元一次方程、三元一次方程组的概念2、使学生通过问题解决,掌握三元一次方程组的解法,进一步体会消元思想三元一次方程组的解法根据方程组特点消元方法、转化思想的研究与运用1、小明手里有12张面额分别为1元、2元、5元的纸币,共计22元,其中,1元纸币的张数是2元纸币张数的4倍,求1元、2元、5元的纸币各多少张?分析:设1元、2元、5元的纸币张数分别为x、y、z,可得x+y+z=12,x+2y+
17、5z=22,x=4y三个方程,合写在一起从而得出三元一次方程和三元一次方程组的概念。只含三个未知数,并且未知项次数为均为1的整式方程叫三元一次方程。含三个相同未知数,且未知项次数为1的三个方程组成三元一次方程组。2、回忆二元一次方程组的消元方法,转化思想,从而引出三元一次方程组的解法研究。二、三元一次方程组的解法研究探索1、代入法 法二:加减法把(3)代入(1)得 由(1)5得5y+z=12(4) 5x+5y+5z=60(4)把(3)代入(2)得 由(4)-(2)得6y+5z=22(5) 4x+3y=38(5)解由(4)(5)组成的方程组 解由(3)(5)组成的方组得把y=2代入(3)得x=8
18、 把x=8 y=2代入(1)得z=2 探索2、可由方程(2)(3)消y得方程(4),然后解由(1)(4)组成的方程组得x、z的值,然后将x、z的值代入(2)或(3)都可以求y,最后得方程组的解。探索3、(书上113页例2)由题意得可用代入法 法二:可用加减法(消a要简便些):两两结合,消同一未知数三、练习1) 2) 4)2、书上114页练习题2本节课学习了三元一次方程和三元一次方程组的概念,利用转化思想消元方法解三元一次方程组(充分分析方程组特点是前提,在此基础上才能恰当灵活选择消元方法),当然,有些问题我们也可以转化为三元一次方程组来解决。三元一次方程组二元一次方程组一元一次方程必做题 书上
19、114页习题8.4第1、2题选做题书上114页习题8.4第3、5题建议:在第八课时可抽点时间给学生简单补充二元一次方程组的图像解法第九、十课时 二元一次方程组复习课1、复习梳理知识脉络,形成知识网络2、通过问题解决,进一步体会数学思想方法及其运用3、培养学生运用所学知识、方法综合分析问题、解决问题的能力教学重点、难点知识网络的形成,数学思想、方法的体会和运用运用所学知识、方法综合分析问题、解决问题能力培养一、知识梳理二、主要题型、方法1、判断方程(组)是否是二元一次方程(组)2、会熟练将二元一次方程变形为用含一个未知数的代数式表示另一未知数。3、二元一次方程解的判断、特殊解的求法4、二元一次方程组解的判断,解二元一次方程组5、解三元一次方程组6、利用一次方程组解决有关问题(实际问题、求值等)三、处理复习题8建议1、2、6、7、8、9、10、11大题作为课堂练习,时间允许教师可根据本班学生实际适当补充一些练习题。必做题3、4、5
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1