ImageVerifierCode 换一换
格式:DOCX , 页数:59 ,大小:75.87KB ,
资源ID:19659952      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/19659952.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(中国农业科学院生物化学笔记Word格式文档下载.docx)为本站会员(b****5)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

中国农业科学院生物化学笔记Word格式文档下载.docx

1、酶是一类重要的蛋白质分子,是生物体内的催化剂。本篇将介绍蛋白质的结构、功能;核酸的结核与功能;酶等三章。重点掌握上述生物大分子物质的结构特性,重要功能及基本的理化性质与应用,这对理解生命的本质具有重要意义。蛋白质是生物体含量最丰富的生物大分子物质,约占人体固体成分的45%,且分布广泛,所有细胞、组织都含有蛋白质。生物体结构越复杂,蛋白质的种类和功能也越繁多。蛋白质也是机体的功能分子(working molecules)。它参与机体的一切生理活动,机体的各种生理功能几乎都是通过蛋白质来完成的,而且在其中起着关键作用,所以蛋白质是生命的物质基础。第一节 蛋白质的分子组成 Conformation

2、of Protein Molecules一、蛋白质的元素组成组成蛋白质的元素除含有碳、氢、氧外都含有氮。有些蛋白质还含有少量硫、磷、铁、锰、锌、铜、碘等。大多数蛋白质含氮量比较接近,平均为16%,这是蛋白质元素组成的一个特点。蛋白质的元素组成中含有氮,是碳水化物、脂肪在营养上不能替代蛋白质的原因。二、 氨基酸氨基酸(amino acid)是组成蛋白质的基本单位。组成人体蛋白质的氨基酸仅有20种。其化学结构式有一个共同特点,即在连接羧基的碳原子上还有一个氨基,故称氨基酸(除甘氨酸外)。(一)氨基酸的结构组成人体蛋白质的20种氨基酸,各种氨基酸在结构上有下列特点。1组成蛋白质的氨基酸,除甘氨酸外,

3、均属L-氨基酸。2不同的L-氨基酸,其侧链(R)不同。(二)氨基酸的分类根据氨基酸侧链R基团的结构和性质,可将20种氨基酸分成四类。1. 非极性疏水性氨基酸2极性中性氨基3酸性氨基酸4碱性氨基酸 在蛋白质的修饰过程中,蛋白质分子中20种氨基酸残基的某些基团还可被甲基化、甲酰化、乙酰化、异戊二烯化和磷酸化等。(三)氨基酸的理化性质1.两性解离及等电点:所有氨基酸都含有碱性的-氨基和酸性的-羧基,因此氨基酸是一种两性电解质,具有两性解离的特性。2.紫外吸收性质 根据氨基酸的吸收光谱,含有共轭双键的色氨酸、酪氨酸的最大吸收峰在280nm波长附近。3.茚三酮反应:可作为氨基酸定量分析方法。三、 肽(p

4、eptides)肽(peptide)在蛋白质分子中由一分子氨基酸的-羧基与另一分子氨基酸的-氨基脱水生成的键称为肽键(peptide bond)。肽键是蛋白质分子中基本的化学键。如由 二个氨基酸以肽键相连形成的肽称为二肽,相互之间以肽键相连。二肽还可通过肽键与另一分子氨基酸相连生成三肽。此反应可继续进行,依次生成四肽、五肽。由10个以内的氨基酸由肽键相连生成的肽称为寡肽(oligopeptide),由更多的氨基酸借肽键相连生成的肽称为多肽(polypeptide)。多肽是链状化合物,故称多肽链(polypeptide chain)。多肽链中的氨基酸分子因脱水缩合而基团不全,故称为氨基酸残基(r

5、esidue)。多肽链中形成肽键的4个原子和两侧的-碳原子成为多肽链的骨架或主链。构成多肽链骨架或主链的原子称为主链原子或骨架原子,而余下的R基团部分,称为侧链。多肽链的左端有自由氨基称为氨基末端(aminoterminal)或N-端,右端有自由羧基称为羧基 末端(carboxylterminal)或C-端。把含有51个氨基酸残基、分子量为5733的胰岛素称作蛋白质。这似乎是习惯上的多肽与蛋白质的分界线。生物活性肽谷胱甘肽(glutathione, GSH) GSH是由谷、半胱和甘氨酸组成的三肽。第一个肽键与一般不同,由谷氨酸-羧基与半胱氨酸的氨基组成,分子中半胱氨酸的巯基是该化合物的主要功能

6、基团。多肽类激素及神经肽 第二节 蛋白质的分子结构Molecular Structure of Protein 人体的蛋白质分子是由20种氨基酸借肽键相连形成的生物大分子。每种蛋白质都有其一定的氨基酸组成及氨基酸排列顺序,以及肽链特定的空间排布。从而体现了蛋白质的特性,是每种蛋白质具有独特生理功能的结构基础。蛋白质分子结构分成一级结构、二级结构、三级结构、四级结构4个层次,后三者统称为空间结构、高级结构或空间构象(conformation)。蛋白质的空间结构涵盖了蛋白质分子中的每一原子在三维空间的相对位置,它们是蛋白质特有性质和功能的结构基础。由一条肽链形成的蛋白质只有一级结构、二级结构和三级

7、结构,由二条或二条以上肽链形成的蛋白质才可能有四级结构。一、蛋白质的一级结构蛋白质中氨基酸的排列顺序称为蛋白质的一级结构(primary structure)。肽键是一级结构的主要化学键。有些蛋白质还包含二硫键,即由两个半胱氨酸巯基脱氢氧化而成。目前已知一级结构的蛋白质数量已相当可观,并且还以更快的速度增长。国际互联网有若干重要的蛋白质数据库(updated protein databases),收集了大量最新的蛋白质一级结构及其他资料,为蛋白质结构与功能的深入研究提供了便利。二、蛋白质的二级结构蛋白质的二级结构(secandary structure)是指蛋白质分子中某一段肽链的局部空间结构

8、,也就是该段肽链主链骨架原子的相对空间位置。不涉及氨基酸残基侧链的构象。蛋白质的二级结构主要包括-螺旋、-折叠、-转角和无规卷曲。(一)肽单元构成肽键的4个原子和与其相邻的两个碳原子(C)构成一个肽单元(peptide unit)。由于参与肽单元的6个原子C1、C、O、N、H、C2位于同一平面,故又称为肽平面。(二)-螺旋-螺旋(-helix):蛋白质分子中多个肽单元通过氨基酸-碳原子的旋转,使多肽链的主链围绕中心轴呈有规律的螺旋上升,盘旋成稳定的-螺旋构象。螺旋*氢键维持。若氢键破坏,则-螺旋构象即遭破坏。(三)-折叠(-pleated sheet)每个肽单元以C为旋转点,依次折叠成锯齿状结

9、构, 氨基酸残基侧链交替地位于锯齿状结构的上下方,氢键是维持-折叠结构的主要次级键。(四)-转角(-turn)和 无规卷曲(random coil)-转角伸展的肽链形成180回折,即U形转角结构。无规卷曲系指没有确定规律性的那部分肽链构象。(五)模体(motif)在许多蛋白质分子中,可发现二个或三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象,被称为模体。一个模序总有其特征性的氨基酸序列,并发挥特殊的功能。如在许多钙结合蛋白分子中通常有一个结合钙离子的模序。它由-螺旋-环-螺旋三个肽段组成。锌指结构(zinc finger)也是一个常见的模体例子。此模体由1个-螺旋和2个反平行

10、的-折叠三个肽段组成。由于Zn2+可稳固模体中-螺旋结构,致使此-螺旋能镶嵌于DNA的大沟中,因此含锌指结构的蛋白质都能与DNA或RNA结合。可见模体的特征性空间构象是其特殊功能的结构基础。(六)氨基酸残基的侧链对二级结构形成的影响蛋白质二级结构是以一级结构为基础的。一段肽链其氨基酸残基的侧链适合形成-螺旋或-折叠,它就会出现相应的二级结构。三、蛋白质的三级结构(一)蛋白质的三级结构(tertiary structure)是指整条肽链中全部氨基酸残基的相对空间位置,也就是整条肽链所有原子在三维空间的排布位置。例:Mb(肌红蛋白)是由153个氨基酸残基构成的单条肽链的蛋白质,含有1个血红素辅基。

11、可进行可逆的氧合和脱氧。蛋白质三级结构的形成和稳定主要*次级键疏水键、离子键(盐键)、氢键和Van der Waals力等。疏水性氨基酸的侧链R基为疏水基团,有避开水,相互聚集而藏于蛋白质分子内部的自然趋势,这种结合力叫疏水键。(二)结构域分子量大的蛋白质三级结构常可分割成1个和数个球状或纤维状的区域,折叠得较为紧密,各行其功能,称为结构域(domain)。如纤连蛋白(fibronectin),它由二条多肽链通过近C-端的两个二硫键相连而成,含有6个结构域,各个结构域分别执行一种功能,有可与细胞、胶原、DNA和肝素等配体结合的结构域。(三)分子伴侣除一级结构为决定因素外,蛋白质空间构象的正确形

12、成还需要一类称为分子伴侣(chaperon)的蛋白质参与。分子伴侣通过提供一个保护环境从而加速蛋白质折叠成天然构象或形成四级结构。分子伴侣广泛地存在于从细菌到人的生物体中,其中有很大一部分被称之为热休克蛋白(heat shock protein)。四、蛋白质的四级结构在体内有许多蛋白质分子含有二条或多条多肽链,才能全面地执行功能。每一条多肽链都有其完整的三级结构,称为蛋白质的亚基(subunit),这种蛋白质分子中各个亚基的空间排布及亚基接触部位的布局和相互作用,称为蛋白质的四级结构(quaternary structure)。在四级结构中,各个亚基间的结合力主要是氢键和离子键维持四级结构。含

13、有四级结构的蛋白质,单独的亚基一般没有生物学功能,只有完整的四级结构寡聚体才有生物学功能。亚基分子结构相同,称之为同二聚体(homodimer),若亚基分子结构不同,则称之为异二聚体(heterodimer)。血红蛋白(hemoglobin,Hb)是由2个亚基和2个亚基组成的四聚体,两种亚基的三级结构颇为相似,且每个亚基都结合有1个血红素(heme)辅基。此贴子已经被作者于2006-4-27 11:56:11编辑过 2006-4-27 11:55:34 手机短信 流传风 等级:版主 文章:5575 积分:24734 注册:2006-4-3 第 2 楼 五、蛋白质的分类(一)根据蛋白质组成成分可

14、分成单纯蛋白质和结合蛋白质,单纯蛋白质只含氨基酸;结合蛋白质,除蛋白质部分外,还含有非蛋白质部分,为蛋白质的生物活性或代谢所依赖。结合蛋白质中的非蛋白质部分被称为辅基,绝大部分辅基通过共价键方式与蛋白质部分相连。辅基的种类也很广,常见的有色素化合物、寡糖、脂类、磷酸、金属离子甚至分子量较大的核酸。(二)蛋白质还可根据其形状分为纤维状蛋白质和球状蛋白质两大类。第三节 蛋白质的结构与功能的关系Relationship of Protein Structure and Function一、蛋白质的一级结构与功能的关系(一)蛋白质的一级结构是空间构象的基础Anfinsen在研究核糖核酸酶时已发现,蛋白

15、质的功能与其三级结构密切相关,而特定三级结构是以氨基酸顺序为基础的。核糖核酸酶是由124个氨基酸残基组成的一条多肽链,分子中8个半胱氨酸的巯基构成四对二硫键(Cys26和Cys84, Cys40和Cys95, Cys58和Cys110, Cys65和Cys72)(图1-17A)。进而形成具有一定空间构象的球状蛋白质。用变性剂和还原剂-巯基乙醇处理该酶溶液,分别破坏二硫键和次级键,使其空间结构被破坏。但肽键不受影响,一级结构仍保持完整,酶变性失去活性。如用透析方法除去尿素和-巯基乙醇后,核糖核酸酶又从无序的多肽链卷曲折叠成天然酶的空间结构,酶从变性状态复性,酶的活性又恢复至原来水平。这充分证明,

16、只要其一级结构未被破坏,就可能恢复原来的三级结构,功能依然存在,所以多肽链中氨基酸的排列顺序是蛋白质空间结构的基础。(二)一级结构与功能的关系已有大量的实验结果证明,一级结构相似的多肽或蛋白质,其空间构象以及功能也相似。例如不同哺乳类动物的胰岛素分子结构都由A和B两条链组成,且二硫键的配对和空间构象也极相似,它们都执行着相同的调节糖代谢等的生理功能。又例如垂体前叶分泌的促肾上腺皮质激素(ACTH)和促黑激素(-MSH, -MSH)共有一段相同的氨基酸序列,因此,ACTH也可促进皮下黑色素生成,但作用较弱。又例存在于生物界的蛋白质如细胞色素C(cytochrome C),比较它们的一级结构,可以

17、帮助了解物种进化间的关系。但有时蛋白质分子中起“关键”作用的氨基酸残基缺失或被替代,都会严重影响空间构象乃至生理功能,甚至导致疾病产生。例如正常人血红蛋白亚基的第6位氨基酸是谷氨酸,而镰刀形贫血患者的血红蛋白中,谷氨酸变成了缬氨酸,即酸性氨基酸被中性氨基酸替代,仅此一个氨基酸之差,本是水溶性的血红蛋白,就聚集成丝,相互粘着,导致红细胞变形成为镰刀状而极易破碎,产生镰刀形红细胞性贫血(sickle cell anemia)。这种由蛋白质分子发生变异所导致的疾病,被称之为“分子病”,其病因为基因突变所致。二、蛋白质空间结构与功能的关系体内蛋白质所具有的特定空间构象都与其发挥特殊的生理功能有着密切的

18、关系。(一)肌红蛋白和血红蛋白结构肌红蛋白(myoglubin, Mb)与血红蛋白都是含有血红素辅基的蛋白质。血红素是铁卟啉化合物,它由4个吡咯环通过4个甲炔基相连成为一个环形,Fe2+ 居于环中。从X线衍射法分析获得的肌红蛋白的三维结构中,可见它是一个只有三级结构的单链蛋白质,氨基酸残基上的疏水侧链大都在分子内部,富极性及电荷的则在分子表面,因此其水溶性较好。Mb分子内部有一个袋形空穴,血红素居于其中。血红蛋白(hemoglubin,Hb)具有四个亚基组成的四级结构,每个亚基结构中间有一个疏水局部,可结合1个血红素并携带1分子氧,因此一分子Hb共结合4分子氧。成年人红细胞中的Hb主要由两条肽

19、链和两条肽链(22)组成,链含141个氨基酸残基,链含146个氨基酸残基。胎儿期主要为22,胚胎期为22。Hb各亚基的三级结构与Mb极为相似。Hb亚基之间通过8对盐键,使四个亚基紧密结合而形成亲水的球状蛋白。(二)血红蛋白的构象变化与结合氧Hb与Mb一样可逆地与O2结合,氧合Hb占总Hb的百分数(称百分饱和度)随O2浓度变化而变化。图1-22为Hb和Mb的氧解离曲线,前者为S状曲线,后者为直角双曲线。可见,Mb易与O2结合,而Hb与O2的结合在O2分压较低时较难。为什么?根据S形曲线的特征可知,Hb中第一个亚基与O2结合以后,促进第二及第三个亚基与O2的结合,当前三个亚基与O2结合后,又大大促

20、进第四个亚基与O2结合,这种效应称为正协同效应(positive cooperativity)。协同效应的定义是指一个亚基与其配体(Hb中的配体为O2)结合后,能影响此寡聚体中另一亚基与配体的结合能力。如果是促进作用则称为正协同效应; 反之则为负协同效应。还可根据Perutz等利用X线衍射技术分析Hb和氧合Hb结晶的三维结构图谱,提出了解释O2与Hb结合的正协同效应的理论。未结合O2时,Hb的1/1和2/2呈对角排列,结构较为紧密,称为紧张态(tense state, T态),T态Hb与O2的亲和力小。随着O2的结合,4个亚基羧基末端之间的盐键断裂,其二级、三级和四级结构也发生变化,使1/1和

21、2/2的长轴形成15的夹角,结构显得相对松弛,称为松弛态(relaxed state, R态)。Hb氧合与脱氧时T态和R态相互转换的可能方式有多种。此种一个氧分子与Hb亚基结合后引起亚基构象变化,称为变构效应(allosteric effect)。小分子O2称为变构剂或效应剂,Hb则被称为变构蛋白。变构效应具有普遍生物学意义。(三)蛋白质构象改变与疾病若蛋白质的折叠发生错误,尽管其一级结构不变,但蛋白质的构象发生改变,仍可影响其功能,严重时可导致疾病发生,有人将此类疾病称为蛋白构象疾病。有些蛋白质错折叠后相互聚集,常形成抗蛋白水解酶的淀粉样纤维沉淀,产生毒性而致病,表现为蛋白质淀粉样纤维沉淀的

22、病理改变,这类疾病包括人纹状体脊髓变性病、老年痴呆症、亨丁顿舞蹈病(Huntington disease)、疯牛病等。第四节 蛋白质的理化性质及其分离纯化The Characters of Protein and its Purification一、蛋白质的理化性质(一)蛋白质的两性电离蛋白质是由氨基酸组成,其分子末端除有自由的-NH2和-COOH外,许多氨基酸残基的侧链上尚有可解离的基因,这些基团在溶液一定pH条件下可以解离成带负电荷或正电荷的基团。当蛋白质溶液在某一pH时,蛋白质解离成正负离子的趋势相等,即成兼性离子,净电荷为零,此时溶液的pH称为蛋白质的等电点(isoelectric p

23、oint,PI)。蛋白质溶液的pH大于等电点时,该蛋白质颗粒带负电荷,小于等电点时则带正电荷。(二)蛋白质的胶体性质蛋白质是生物大分子,分子量可自1万至100万之巨,其分子的直径可达1100nm,为胶粒范围之内。(三)蛋白质的变性、沉淀和凝固在某些物理和化学因素作用下,其特定的空间构象被破坏,也即有序的空间结构变成无序的空间结构,从而导致其理化性质的改变和生物活性的丧失,称为蛋白质的变性(denaturation)。1 蛋白质变性的特征:蛋白质变性的主要特征是生物活性丧失。2 蛋白质变性的本质:一般认为蛋白质的变性主要发生二硫键和非共价键的破坏,蛋白质变性是蛋白质空间构象的改变或破坏,不涉及一

24、级结构中氨基酸序列的改变。3 蛋白质变性的意义:在临床医学上,变性因素常被应用来消毒及灭菌。此外, 防止蛋白质变性也是有效保存蛋白质制剂(如疫苗等)的必要条件。4. 若蛋白质变性程度较轻,去除变性因素后,有些蛋白质仍可恢复或部分恢复其原有的构象和功能,称为复性(renaturation)。但是许多蛋白质变性后,空间构象严重被破坏,不能复原,称为不可逆性变性。5. 蛋白质经强酸、强碱作用发生变性后,仍能溶解于强酸或强碱溶液中,若将pH调至等电点,则变性蛋白质立即结成絮状的不溶解物,此絮状物仍可溶解于强酸和强碱中。如再加热则絮状物可变成比较坚固的凝块,此凝块不易再溶于强酸和强碱中,这种现象称为蛋白

25、质的凝固作用(protein coagulation)。(四)蛋白质的紫外吸收蛋白质在280nm波长处有特征性的紫外吸收,可作蛋白质定量测定。(五)蛋白质的呈色反应茚三酮反应(ninhydrin reaction) 蛋白质经水解后产生的氨基酸也可发生茚三酮反应,详见本章第一节。双缩脲反应(biuret reaction) 蛋白质和多肽分子中肽键在稀碱溶液中与硫酸铜共热,呈现紫色或红色,称为双缩脲反应。氨基酸不出现此反应。二、蛋白质的分离和纯化(一) 透析及超滤法(二)丙酮沉淀、盐析及免疫沉淀(三)电泳(四) 层析(五) 分子筛(六) 超速离心小 结Summary蛋白质是重要的生物大分子,在体内

26、分布广泛,含量丰富,种类繁多。每一种蛋白质都有其特定的空间构象和生物学功能。组成蛋白质的基本单位为L-氨基酸,共有20种,可分为非极性疏水性氨基酸、极性中性氨基酸、酸性氨基酸和碱性氨基酸四类。氨基酸属于两性电解质,在溶液的pH等于其pI时,氨基酸呈兼性离子。氨基酸可通过肽键相连而成肽。小于10个氨基酸组成的肽称为寡肽,大于10个则称为多肽。体内存在许多如GSH、促甲状腺释放激素和神经肽等重要的生物活性肽。复杂的蛋白质结构可分成一级、二级、三级和四级结构四个层次。蛋白质一级结构是指蛋白质分子中氨基酸自N端至C端的排列顺序,即氨基酸序列,其连接键为肽键,还包括二硫键的位置。形成肽键的6个原子处于同

27、一平面,构成了所谓的肽单元。二级结构是指蛋白质主链局部的空间结构,不涉及氨基酸残基侧链构象。主要为-螺旋、-折叠、-转角和无规卷曲,以氢键维持其稳定性。在蛋白质分子中,空间上相互邻近的二个或三个具有二级结构的肽段,完成特定的生物学功能,称之为模体。三级结构是指多肽链主链和侧链的全部原子的空间排布位置。三级结构的形成和稳定主要*次级键。一些蛋白质的三级结构可形成1个或数个球状或纤维状的区域,各行其功能,称为结构域。四级结构是指蛋白质亚基之间的缔合,也主要*次级键维系。根据蛋白质的形状,可分成球状蛋白质和纤维状蛋白质。根据组成成分,还可分成单纯蛋白质和结合蛋白质,前者仅含有氨基酸,后者除氨基酸外,

28、还含有非蛋白质的辅基成分。一级结构是空间构象的基础,也是功能的基础。一级结构相似的蛋白质,其空间构象及功能也相近。若蛋白质的一级结构发生改变则影响其正常功能,由此引起的疾病称为分子病。生物体内蛋白质的合成、加工和成熟是一个复杂的过程,其中多肽链的正确折叠对其正确构象形成和功能发挥至关重要。蛋白质折叠成正确的空间构象过程,除一级结构是其决定因素外,还需要分子伴侣参与。蛋白质空间构象与功能有着密切关系。血红蛋白亚基与O2结合可引起另一亚基构象变化,使之更易与O2结合,所以血红蛋白的氧解离曲线呈S型。这种变构效应是蛋白质中普遍存在的功能调节方式之一。蛋白质的空间构象发生改变,可导致其理化性质变化和生物活性的丧失,称之为蛋白质变性。蛋白质发生变性后,只要其一级结构未遭破坏,仍可在一定条件下复性,恢复原有的空间构象和功能。分离、纯化蛋白质是研究单个蛋白质结构与功能的先决条件。通常利用蛋白质的理化性质,采取不损伤蛋白质结构和功能的物理方法来纯化蛋白质。常用的技术有电泳法、层析法、超速离心法等。37 手机短信 第 3 楼 概 述Introduction核酸(nucl

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1