1、数学中考压轴题 推荐1.(南京27,9分)如图,P为ABC内一点,连接PA、PB、PC,在PAB、PBC和PAC中,如果存在一个三角形与ABC相似,那么就称P为ABC的自相似点如图,已知RtABC中,ACB=90,ACBA,CD是AB上的中线,过点B作BECD,垂足为E,试说明E是ABC的自相似点在ABC中,ABC如图,利用尺规作出ABC的自相似点P(写出作法并保留作图痕迹);若ABC的内心P(角平分线的交点)是该三角形的自相似点,求该三角形三个内角的度数2(扬州,12分)在中,是边的中点,交于点动点从点出发沿射线以每秒厘米的速度运动同时,动点从点出发沿射线运动,且始终保持设运动时间为秒()(
2、1)与相似吗?以图为例说明理由;(2)若厘米求动点的运动速度;设的面积为(平方厘米),求与的函数关系式;(3)探求三者之间的数量关系,以图为例说明理由3.(浙江绍兴,)数学课上,李老师出示了如下框中的题目.小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论 当点为的中点时,如图1,确定线段与的大小关系,请你直接写出结论: (填“”,“”,“”或“=”).理由如下:如图2,过点作,交于点.(请你完成以下解答过程)(3)拓展结论,设计新题 在等边三角形中,点在直线上,点在直线上,且.若的边长为1,求的长(请你直接写出结果). 5. (2011四川成都,20,10分) 如图,已知线段AB
3、CD,AD与BC相交于点K,E是线段AD上一动点. (1)若BK=KC,求的值; (2)连接BE,若BE平分ABC,则当AE=AD时,猜想线段AB、BC、CD三者之间有怎样的等量关系?请写出你的结论并予以证明再探究:当AE=AD (),而其余条件不变时,线段AB、BC、CD三者之间又有怎样的等量关系?请直接写出你的结论,不必证明6.(2011福建泉州,26,14分)如图,在平面直角坐标系xOy中,直线AB与x轴交于点A, 与y轴交于点B, 且OA = 3,AB = 5点P从点O出发沿OA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AO返回;点Q从点A出发沿AB以每秒1个单
4、位长的速度向点B匀速运动伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QBBOOP于点E点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止设点P、Q运动的时间是t秒(t0)(1)求直线AB的解析式;(2)在点P从O向A运动的过程中,求APQ的面积S与t之间的函数关系式(不必写出t的取值范围); (3)在点E从B向O运动的过程中,完成下面问题: 四边形QBED能否成为直角梯形?若能,请求出t的值;若不能,请说明理由;当DE经过点O时,请你直接写出t的值7. (2011四川重庆,26,12分)如图,矩形ABCD中,AB6,BC2,点O是AB的中点,点P在AB的延长线上,且
5、BP3一动点E从O点出发,以每秒1个单位长度的速度沿OA匀速动动,到达A点后,立即以原速度沿AO返回;另一动点F从P点出发,以每秒1个单位长度的速度沿射线PA匀速动动,点E、F同时出发,当两点相遇时停止运动在点E、F的运动过程中,以EF为边作等边EFG,使EFG和矩形ABCD在射线PA的同侧,设动动的时间为t秒(t0)(1)当等边EFG的边FG恰好经过点C时,求运动时间t的值;(2)在整个运动过程中,设等边EFG和矩形ABCD重叠部分的面积为S,请直接写出S与t之间的函数关系式和相应的自变量t的取值范围;(3)设EG与矩形ABCD的对角线AC的交点为H,是否存在这样的t,使AOH是等腰三角形?
6、若存在,求出对应的t的值;若不存在,请说明理由8. (2011山东东营,24,12分) 如图所示,四边形OABC是矩形,点A、C的坐标分别为(-3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D做直线交折现OAB与点E。(1)记ODE的面积为S,求S与b的函数关系式;(2)当点E在线段OA上时,且tanDEO=。若矩形OABC关于直线DE的对称图形为四边形,试探究四边形与矩形OABC的重叠部分的面积是否发生变化,如不变,求出该重叠部分的面积;若改变,请说明理由。9. (2011山东济宁,22,8分)数学课上,李老师出示了这样一道题目:如图,正方形的边长为,为边延长线上的
7、一点,为的中点,的垂直平分线交边于,交边的延长线于.当时,与的比值是多少?经过思考,小明展示了一种正确的解题思路:过作直线平行于交,分别于,如图,则可得:,因为,所以.可求出和的值,进而可求得与的比值.(1) 请按照小明的思路写出求解过程.(2) 小东又对此题作了进一步探究,得出了的结论.你认为小东的这个结论正确吗?如果正确,请给予证明;如果不正确,请说明理由.10. (2011山东威海,24,11分)如图,ABCD是一张矩形纸片,AD=BC=1,AB=CD=5在矩形ABCD的边AB上取一点M,在CD上取一点N,将纸片沿MN折叠,使MB与DN交于点K,得到MNK(1)若1=70,求MNK的度数(2)MNK的面积能否小于?若能,求出此时1的度数;若不能,试说明理由(3)如何折叠能够使MNK的面积最大?请你利用备用图探究可能出现的情况,求出最大值(备用图) (情况二)
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1