1、 几何参量、力学参量、电磁参量、化学参量。3.热平衡定律各自与第三个物体达到热平衡的两个物体,彼此也处于热平衡。 用来比较物体温度高低的标准物体就是温度计。2. 温标温度的数值表示法叫做温标。有三种常用的温标: 经验温标 :以测温物质的测温特性随温度的变化为依据而确定的温标。实验表明,选择 不同的测温物质或不同的测温特性而确定的经验温标,除标准点外,其他温度并不完全一致。水的 冰点 沸点摄氏温标( 1742 年,瑞典):华氏温标( 1714 年,德国):以上两种测温物质都是水银温度计。它们之间的关系为 理想气体温标 :用理想气体作测温物质所确定的温标。第二章 热力学的基本规律 本章主要介绍热力
2、学的基本规律以及常见的基本热力学函数。1. 热力学系统由大量微观粒子组成的有限的宏观客体称之为热力学系统,简称为系统。2. 平衡状态及其描述 当没有外界影响时,只要经过足够长的时间,系统将会自动趋于一个各种宏观性质不随时 间变化的状态,这种状态称为平衡状态,简称为平衡态。水的 冰点 沸点 摄氏温标( 1742 年,瑞典): 华氏温标( 1714 年,德国): 以上两种测温物质都是水银温度计。一 功的计算1. 简单系统 (p、V、T 系统)当系统的体积由变到时,外界对系统所做的功为:(1.2.3)式中 p 和 V均为系统的平衡状态参量。显然,系统膨胀(即体积 V 增大)时,外界对系统做负功,也即
3、系统对外界做正功;反之,外界对系统做正功。对于循环过程,功一般不为零(图 1-1 ):正循环(顺时针方向),系统对外界做正功;逆循环(逆时针方向),外界对系统做正功。 图 1-12. 液体表面薄膜外界克服表面张力所做的功为:(1.2.4)这里,是液体的表面张力系数。(见图 1-2 )3. 电介质设两板距离为 l 的电容器内充满了电介质,两板的电位差为 面电荷密度为 ,若电量的增加为 dq,则外界所做的功为:dW = v dq,但 v = l , dq = A d d W = l A d = V d上式中, V 是电介质的体积。另外,我们由高斯定律可知 里,是真空介电常数, P 是电极化强度。最
4、后可得:dW = V+ V d P (1.2.5)上式右边第一项为激发电场的功,第二项为使介质极化的v,电场强度为 ,板的面积为 A,= D(电位移),且 D = + P,这功。4.磁介质当螺线管中的电流改变时,外电源将克服感生 (反) 电动势作功:dW = v i dt由法拉第定律 : v = N 又由安培定律 : H l = Ni dW = Ndt = VH 从电磁学可知, =( H+ m) 最后得: dW = V+VHdm (1.2.6)上式右边第一项是激发磁场的功,第二项是使介质磁化所做的功。 上述各式, i 电流强度, v感生电动势, H磁场强度, m磁化强度, 介质内的磁感应强度,
5、真空磁导率,A介质横截面积, V介质体积, l 介质长度, N线圈匝数。综合上面几个例子,我们可以把外界对系统所做的功(准静态过程中)一般表示为: dW = (1.2.7)其中,是外参量,是与相应的广义力。一 热容量与焓1. 广延量与强度量 ( Extensive Quantity and Intensive Quantity )广延量 :与系统的大小(空间延伸的范围或自由度的数目)成正比的热力学量。如:系统的质 量 M,摩尔数 n,体积 V,内能 U, 等等。强度量 :不随系统大小改变的热力学量。例如:系统的压强 p,温度 T,密度 ,磁化强度 m,摩尔体积 v,等等。 2. 热容量与焓 热
6、容量的定义如下: C = (1.2.8)热容量是过程量,它也是一个广延量。定容热容量(等容过程):= (1.2.9)定压热容量(等压过程):=+ (1.2.10)如果令 H = U + pV (1.2.11)H 称之为焓 (enthalpy) ,它也是一个态函数,而且是广延量。对于等压过程, H =U + pV ( p = 0 )故有: = (1.2.12)理想气体的内能和焓1. 焦耳定律焦耳通过气体自由膨胀实验发现:理想气体的内能只是温度的函数,与体积无关。即= 0 (1.2.13)2. 理想气体的内能与焓对于理想气体,由于U = U ( T ),所以有因此, U =且, H =C =(1.
7、2.14)(1.2.15)(1.2.8) 对于等压过程, H =U + pV ( p = 0 )一 理想气体的内能和焓1. 焦耳定律 焦耳通过气体自由膨胀实验发现:2. 理想气体的内能与焓 对于理想气体,由于 U = U ( T ) ,所以有因此, U = (1.2.14)且, H = (1.2.15) 热力学第二定律的实质在于,它指出了自然界一切与热现象有关的实际过程都是不可逆过程,它们有一定的自发进行的方向。系统自发地从初态 A 到终态 B 的不可逆过程,并不取决于过程进行的方式,而是由系统的初态 和终态的相互关系确定的。这样,就使得人们可以用一个态函数来描述系统自发过程的这种性质, 这个
8、态函数就是 熵 (entropy一 熵与热力学基本微分方程1. 卡诺定理卡诺定理指出,所有工作于两个一定温度之间的热机,以可逆热机的效率为最大。即: = (1.3.1)其中,等号对应于可逆热机,小于号对应于不可逆热机。2. 克劳修斯等式和不等式从卡诺定理很容易推出, 若一个系统在循环过程中与温度为 , , 的 n个热源接触, 并从它们那 里分别吸收 , , 的热量,则有: 0 (1.3.2) 这里,我们规定系统吸收热量为正,放出热量为负。同样,等号对应于可逆循环过程,不等号 对应于不可逆循环过程。当 n ,上式将过渡成为 0 (1.3.3)这里,表示沿某个循环过程求积分。上式就是克劳修斯等式(
9、对于等号)和不等式(对于不等 号)。3. 熵由 (1.3.3) 式可见,在系统的初态 A和终态 B给定以后,线积分与路径无关,仅由 A,B 决 定。因此,可以定义一个态函数熵 S : 或者 熵是广延量,其单位是 J / K 。必须 注意 :在熵差计算式中,线积分一定要沿某一可逆过程进行。对于系统的不可逆过程,只 要其初、终态是平衡态,熵的定义就仍然有意义。只是在计算熵变时,积分路径一定要选择一条可 逆过程进行,这在理论上讲,总是存在的4.热力学基本方程有了熵的概念,热力学第一定律可写成如下形式:(1.3.6)这就是 热力学基本(微分)方程 。对于简单系统,上式为:(1.3.7)一 熵增加原理1
10、. 热力学第二定律的数学表达式设系统经一个过程从初态 A终态 B,现令系统经过一个假想的可逆过程 (这在理论上总是存在 的),从 B A,则由克劳修斯等式和不等式,有 0 或 + 0由熵的定义, S- S (1.3.8)对于无穷小过程, dS (1.3.9) 上面两式就是热力学第二定律的数学表达式。2. 熵增加原理 如果过程是绝热的,即 dQ = 0 ,则有 S- S 0 (1.3.10)该式表明,经绝热过程后,系统的熵永不减少,经可逆绝热过程后熵不变,经不可逆绝热过程 后熵增加。此乃熵增加原理。值得注意的是,不能由过程前后熵的增加而随意得出过程不可逆的结论,只有对于绝热过程, 才可用熵变对过
11、程的性质和方向进行判断。在统计物理学中我们将看到,熵是系统微观粒子作无规则运动混乱程度的量度,系统微观粒子 的混乱程度越大,其熵也越大。 基本热力学函数前面我们已经引进了内能、焓、熵等热力学函数,本节我们再介绍几个重要的热力学函数一 物态方程1. 物态方程的一般形式描述平衡态下系统的温度和状态参量之间的函数关系式称之为物态方程, 一般的形式可表达为:F (T, p,V,x1,x2, ) 0(1.4.1)其中, x1,x 2等是除 T、p、V以外的其它状态参量。在热力学中,物态方程的具体形式一般要由实验来确定。由系统的物态方程,可以得到下面几 个重要的物理量:1膨胀系数:(1.4.2)1V =V
12、T2压强系数:(1.4.3)= 1 p pT3等温压缩系数: T= V1 Vp T(1.4.4)注意,等温压缩系数是一个负数,这是物质稳定存在的必要条件。因为自然界的物质总是越压 越小,而绝不是相反。2. 几种常见的物态方程1理想气体(1.4.5)pV = nRT2实际气体范德瓦耳斯 (Van der Waals)方程2p an V nb nRTV2(1.4.6)昂尼斯 (Onnes) 方程p nRT 1VVn B(T)C(T)(1.4.7)上式中, B(T),C( T) ,分别称为第二,第三维里 (Virial) 系数。3固体和液体由于固体和液体的 和 T 均很小,且可以看成是常数。设固体和
13、液体都是各向同性的,V(T,p) V0(T0,0) 1 (T T0) T p (1.4.8)4顺磁性固体 (居里定律)m = C H (1.4.9)T这里, m为磁化强度(即单位体积的磁矩) , H为磁场强度, C是一个与物质有关的常数。1. 自由能定义式F = U TS (1.4.10)上式定义的是一个新的态函数,称之为自由能。它是热力学中的一个重要的热力学函数。可以 认为, F 是系统内能的一部分,它可以在等温过程中转化为对外界所做的功(即将这部分内能释放 出来),正因为如此,我们称 F 为自由能。而 TS往往可称为束缚能。2. 最大功定理设系统由初态 A经等温过程达到终态 B,则由 (1
14、.3.4) 式可得:SB - S A 再由热力学第一定律,上式可写为:利用自由能的定义式,最后得到UBFA - F B -W(1.4.11)该式的意义是:在等温过程中,系统对外所做的功不大于其自由能的减少。或者说,在等温过 程中,外界从系统所能获得的最大功是系统自由能的减少。这就是最大功定理。如果系统的体积不变,即 W = 0 ,则 (1.4.11) 式可化为F = FB - F A0(1.4.12)这就是说,在等温等容过程中,系统的自由能永不增加。或者说,在等温等容条件下,系统中 发生的不可逆过程总是朝着自由能减少的方向进行的。第二章 均匀物质的热力学性质 内能、焓、自由能和吉布斯函数的全微
15、分一 热力学函数 U, H, F, G的全微分 热力学基本微分方程为 :dU=TdS pdV (2.1.1)对焓的定义式 H = U + pV 求微分可得dH = dU + pdV + Vdp = TdS pdV + pdV + Vdp dH = TdS + Vdp (2.1.2)分别对自由能和吉布斯函数的定义式 F = U TS, G = H TS 求微分,经简单运算可得dF=SdT pdV (2.1.3)dG = SdT + Vdp (2.1.4) 记忆方法:二 麦克斯韦 ( Maxwell ) 关系 由于 U,H,F,G 均为状态函数,它们的微分必定满足全微分条件,即(2.1.5)VSS
16、VSppTV(2.1.6)(2.1.7)T= pSS= V T =S = (2.1.8)pTTp以上四式就是著名的麦克斯韦关系(简称为麦氏关系 ) 。它们在热力学中应用极其广泛。另外, 由 (1.1.1) 四个全微分式,还可得到下面的几个十分有用的公式。因为内能可看成S和 V的函数,即 U = U( S,V), 求其全微分, 可得 dU = U dS + U dVS V V S将上式与 (2.1.1)式比较,可得,US V = T,(2.1.9)类似地,可得= T, p(2.1.10)S,(2.1.11)(2.1.12)麦氏关系的简单应用麦氏关系给出了热力学量的偏导数之间的关系,这样,人们可利
17、用麦氏关系,把一些不能直接测量的物理量用可测物理量 (如:物态方程,热容量等等 ) 表达出来。本节以几个例子来说明麦氏关系的应用求证:在温度不变时 , 内能随体积的变化率与物态方程有如下关系U = Tp p (2.2.1) ( 此式称为能态方程 ) TV证明: 选择 T, V 为独立变量,内能和熵均可写成态变量 T和 V的函数,UdU =dT +dV = CV dT +dVSdS =由热力学第一定律有U = U( T, V) ,S = S (T, S )dU = TdS pdV = Tp dV上式与前式比较,可得CV=U =T(2.2.2)=T(2.2.1)应用麦氏关系 (2.1.7) ,即可
18、得到,证毕。讨论: (1) 对于理想气体 , pV = nRT显然有:U = 0 ,这正是焦耳定律的结果。 VT(2) 对于范氏气体( 1 mol )ap 2 v b = RT vU =T R p = a2 v T v b v由此可见,实际气体的内能不仅与温度有关,而且与体积有关。二 求证:在温度不变时 , 焓随压强的变化率与物态方程有如下关系= V T(2.2.3) (此式称为焓态方程 ) 以 T,p 为独立变量,则有H = H(T, p )( T, p )HdH = dT +dpTPdS = dT +dH = TdS + Vdp =dT +TS V dp比较以上两式得Cp= T(2.2.4
19、)P+ V (2.2.6)利用麦氏关系 (2.1.8) 式,即可证得式三 试求,简单系统的Cp CV = ?由前面讨论得到的和两式,可得:Cp CV = T因为 =+熵可写成S (p ) =T, V ( T, p ) )于是 , Cp CV = T利用麦氏关系 (2.1.7), 最后可得Cp CV = T (2.2.7)或者, Cp CV = (2.2.8)注意:这里应用了关系式: = 此式可作为习题 以上几式,对于任意简单系统均适用。但 (1.2.16) 式 -= nR只是理想气体的结论。 气体的节流过程和绝热膨胀过程 这两个过程是获得低温的常用方法 .一 气体的节流过程实验表明: 气体在节
20、流过程前该过程是 1852 年焦耳和汤姆孙作的多孔塞实验中所发生的过程。后,温度发生变化。此现象称为焦耳 - 汤姆孙效应。若节流后气体温度降低,称为正焦耳汤姆孙效应;若节流后气体温度升高,称为负焦耳汤姆孙效应。1.节流过程中 , 外界对这部分气体所作的功为:W = dV + ( dV ) = pV pV因过程是绝热的, Q = 0, 所以, 由热力学第一定律可得 := W + Q =+=+或者 : = (2.3.1) 由此可见,气体的节流过程是一个等焓过程。2.焦 - 汤系数= (2.3.2)它表示在节流过程前后,气体温度随压强的变化率。以 T, p 为独立变量 ,dH =dT +dp= Cp
21、 dT + ( 利用上节的结果 )由焦汤系数的定义可得或者 , = (2.3.3)所以,由定压热容量和物态方程,就可求出焦汤系数。 (1) 理想气体 pV = nRT = = 0 ,即理想气体经节流过程后,温度不变。(2) 实际气体若 , 0 ,正效应,致冷。 , 0 转变成 0由此可见: (1) 绝热膨胀,恒大于零,也即气体经绝热膨胀后,其温度总是下降的,无所谓的 转变温度。(2) 在相同的压强降落下,气体在准静态绝热膨胀中的温度降落大于节流过程中的温度降落。 事实上, = 基本热力学函数的确定 在所引进的热力学函数中,最基本的是三个:物态方程,内能和熵。其它热力学函数均可由它 们导出。因而,基本热力学函数确定后,就可推知系统的全部热力学性质。一 以 T, V 为态变量物态方程: p = p ( T, V ) ( 由实验得到 ) (2.4.1)内能: dU = CdT + dV U
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1