ImageVerifierCode 换一换
格式:DOCX , 页数:12 ,大小:140.10KB ,
资源ID:19493703      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/19493703.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(初二数学勾股定理讲义Word格式文档下载.docx)为本站会员(b****5)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

初二数学勾股定理讲义Word格式文档下载.docx

1、已知直角三角形的两边,利用勾股定理求第三边。(1)在RtABC中,C=90若a=5,b=12,则c=_;若a=15,c=25,则b=_;若c=61,b=60,则a=_;若ab=34,c=10则RtABC的面积是=_。(2)如果直角三角形的两直角边长分别为,2n(n1),那么它的斜边长是() A、2n B、n+1 C、n21 D、(3)在RtABC中,a,b,c为三边长,则下列关系中正确的是( )A. B. C. D.以上都有可能(4)已知一个直角三角形的两边长分别为3和4,则第三边长的平方是()A、25 B、14 C、7 D、7或25例2:已知直角三角形的一边以及另外两边的关系利用勾股定理求周

2、长、面积等问题。(1)直角三角形两直角边长分别为5和12,则它斜边上的高为_。(2)已知RtABC中,C=90,若a+b=14cm,c=10cm,则RtABC的面积是() A、24 B、36 C、48 D、60(3)已知x、y为正数,且x2-4+(y2-3)2=0,如果以x、y的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为( ) A、5 B、25 C、7 D、15 例3:探索勾股定理的证明有四个斜边为c、两直角边长为a,b的全等三角形,拼成如图所示的五边形,利用这个图形证明勾股定理。考点二:勾股定理的逆定理(1)勾股定理的逆定理:如果三角形的三边长a,b,c有关

3、系,那么这个三角形是直角三角形。(2)常见的勾股数:(3n,4n,5n),(5n,12n,13n),(8n,15n,17n),(7n,24n,25n),(9n,40n,41n).(n为正整数)(3)直角三角形的判定方法:如果三角形的三边长a,b,c有关系,有一个角是直角的三角形是直角三角形。两内角互余的三角形是直角三角形。如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形。勾股数的应用(1)下列各组数据中的三个数,可作为三边长构成直角三角形的是( )A. 4,5,6 B. 2,3,4C. 11,12,13 D. 8,15,17(2)若线段a,b,c组成直角三角形,则它们的比

4、为() A、234 B、346 C、51213 D、467利用勾股定理逆定理判断三角形的形状(1)下面的三角形中:ABC中,C=AB;ABC中,A:B:C=1:2:3;ABC中,a:b:c=3:4:5;ABC中,三边长分别为8,15,17其中是直角三角形的个数有( )A1个 B2个 C3个 D4个(2)若三角形的三边之比为,则这个三角形一定是( )A.等腰三角形 B.直角三角形 C.等腰直角三角形 D.不等边三角形(3)已知a,b,c为ABC三边,且满足(a2b2)(a2+b2c2)0,则它的形状为()A.直角三角形 B.等腰三角形 C.等腰直角三角形 D.等腰三角形或直角三角形(4)将直角三

5、角形的三条边长同时扩大同一倍数, 得到的三角形是( )A 钝角三角形 B. 锐角三角形 C. 直角三角形 D. 等腰三角形(5)若ABC的三边长a,b,c满足试判断ABC的形状。(6)ABC的两边分别为5,12,另一边为奇数,且a+b+c是3的倍数,则c应为 ,此三角形为 。求最大、最小角的问题(1)若三角形三条边的长分别是7,24,25,则这个三角形的最大内角是 度。(2)已知三角形三边的比为1:2,则其最小角为 。考点三:勾股定理的应用面积问题(1)下图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的边长分别是3、5、2、3,则最大正方形

6、E的面积是( )A. 13 B. 26 C. 47 D. 94 (图1) (图2) (图3)(3)如图,ABC为直角三角形,分别以AB,BC,AC为直径向外作半圆,用勾股定理说明三个半圆的面积关系,可得( )A. S1+ S2 S3 B. S1+ S2= S3 C. S2+S3 S1 D. 以上都不是(2)如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是S1、S2、S3,则它们之间的关系是( )A. S1- S2= S3 B. S1+ S2= S3 C. S2+S3 S1 D. S2- S3=S1求长度问题(1)小明想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他

7、把绳子的下端拉开5米后,发现下端刚好接触地面,求旗杆的高度。(2)在一棵树10m高的B处,有两只猴子,一只爬下树走到离树20m处的池塘A处;另外一只爬到树顶D处后直接跃到A外,距离以直线计算,如果两只猴子所经过的距离相等,试问这棵树有多高?最短路程问题(1)如图1,已知圆柱体底面圆的半径为,高为2,AB,CD分别是两底面的直径,AD,BC是母线,若一只小虫从A点出发,从侧面爬行到C点,则小虫爬行的最短路线的长度是 。(结果保留根式)(2)如图2,有一个长、宽、高为3米的封闭的正方体纸盒,一只昆虫从顶点A要爬到顶点B,那么这只昆虫爬行的最短距离为 。 (图1) (图2)例4:航海问题(1)一轮船

8、以16海里/时的速度从A港向东北方向航行,另一艘船同时以12海里/时的速度从A港向西北方向航行,经过1.5小时后,它们相距_海里(2)(深圳)如图1,某货船以24海里时的速度将一批重要物资从A处运往正东方向的M处,在点A处测得某岛C在北偏东60的方向上。该货船航行30分钟到达B处,此时又测得该岛在北偏东30的方向上,已知在C岛周围9海里的区域内有暗礁,若继续向正东方向航行,该货船有无暗礁危险?试说明理由。(3)如图2,某沿海开放城市A接到台风警报,在该市正南方向260km的B处有一台风中心,沿BC方向以15km/h的速度向D移动,已知城市A到BC的距离AD=100km,那么台风中心经过多长时间

9、从B点移到D点?如果在距台风中心30km的圆形区域内都将有受到台风的破坏的危险,正在D点休闲的游人在接到台风警报后的几小时内撤离才可脱离危险?例5:网格问题(1)如图,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC中,边长为无理数的边数是( )A0 B1 C2 D3(2)如图,正方形网格中的ABC,若小方格边长为1,则ABC是 ( )A.直角三角形 B.锐角三角形 C.钝角三角形 D.以上答案都不对(3)如图,小方格都是边长为1的正方形,则四边形ABCD的面积是 ( )A 25 B. 12.5 C. 9 D. 8.5例6:图形问题(1)如图1,求该四边形的面积(2)(2010四川

10、宜宾)如图2,已知,在ABC中,A= 45,AC=,AB= +1,则边BC的长为 (图1) (图2)(3)某公司的大门如图所示,其中四边形 是长方形,上部是以为直径的半圆,其中=2.3,=2,现有一辆装满货物的卡车,高为2.5,宽为1.6,问这辆卡车能否通过公司的大门?并说明你的理由. (4)(太原)将一根长24的筷子置于地面直径为5,高为12的圆柱形水杯中,设筷子露在杯子外面的长为h,则h的取值范围 。【中考链接】1.(2010 广西钦州市)如图是一张直角三角形的纸片,两直角边AC6 cm、BC8 cm, 现将ABC折叠,使点B与点A重合,折痕为DE,则BE的长为(A)4 cm (B)5 c

11、m (C)6 cm (D)10 cm2(2010 山东荷泽)(本题满分8分)如图所示,在RtABC中,C90,A30,BD是ABC的平分线,CD5,求AB的长3. 如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫格点,以格点为顶点分别按下列要求画三角形:使三角形的三边长分别为3、(在图甲中画一个即可);使三角形为钝角三角形且面积为4(在图乙中画一个即可)4(2010广东湛江)下列四组线段中,可以构成直角三角形的是( )A.1,2,3 B.2,3,4 C.3,4,5 D.4,5,65(2010 四川泸州)在ABC中,AB=6,AC=8,BC=10,则该三角形为( )A锐角三角形 B直

12、角三角形 C 钝角三角形 D等腰直角三角形6.(2010辽宁丹东市)已知ABC是边长为1的等腰直角三角形,以RtABC的斜边AC为直角边,画第二个等腰RtACD,再以RtACD的斜边AD为直角边,画第三个等腰RtADE,依此类推,第n个等腰直角三角形的斜边长是 7.(2010广西南宁)如图,每个小正方形的边长为1,的三边的大小关系式: (A) (B) (C) (D)8(2010 湖北孝感)(本题满分10分)问题情境勾股定理是一条古老的数学定理,它有很多种证明方法,我国汉代数学家赵爽根据弦图,利用面积法进行证明,著名数学家华罗庚曾提出把“数形关系”(勾股定理)带到其他星球,作为地球人与其他星球“人”进行第一次“谈话”的语言。定理表述请你根据图1中的直角三角形叙述勾股定理(用文字及符号语言叙述);(3分) 尝试证明以图1中的直角三角形为基础,可以构造出以a、b为底,以为高的直角梯形(如图2),请你利用图2,验证勾股定理;(4分)知识拓展利用图2中的直角梯形,我们可以证明其证明步骤如下:= 。又在直角梯形ABCD中有BC AD(填大小关系),即 ,

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1