1、846(两个数之积)=121226=(三个数之积)623=(四个数之积)例1 下列算式中,*各代表什么数?(1)+513-6; (2)28-157;(3)3=54; (4)387;(5)56*7。解:(1)由加法运算规则知,=13-6-52;(2)由减法运算规则知,28-(157)6;(3)由乘法运算规则知,54318;(4)由除法运算规则知,=873261;(5)由除法运算规则知,*5678。例2 下列算式中,各代表什么数?(1)+=48;(2)621-;(3)5-18612;(4)63-4513。(1)表示一个数,根据乘法的意义知,+=3,故=48316。(2)先把左端(6)看成一个数,就
2、有(6)21,321-6,1535。(3)把5,186分别看成一个数,得到5=12186,=15,=1553。(4)把63,45分别看成一个数,得到4563-13,5,4559。例3(1)满足581271的整数等于几?(2)180是由哪四个不同的且大于1的数字相乘得到的?试把这四个数按从小到大的次序填在下式的里。180=。(3)若数,满足=48和=3,则,各等于多少?分析与解:(1)因为5812410,7112511,并且为整数,所以,只有=5才满足原式。(2)拆分180为四个整数的乘积有很多种方法,如180145901330但拆分成四个“大于1”的数字的乘积,范围就缩小了,如1802926若
3、再限制拆分成四个“不同的”数字的乘积,范围又缩小了。按从小到大的次序排列只有下面一种:6。所以填的四个数字依次为2,3,5,6。(3)首先,由=3知,因此,在把48拆分为两数的乘积时,有484812421631248其中,只有48124中,124=3,因此=12,=4。这道题还可以这样解:由=3知,=3。把=48中的换成3,就有(3)48,于是得到=48因为1644,所以=4。再把=3中的换成4,就有=3=43=12。这是一种“代换”的思想,它在今后的数学学习中应用十分广泛。下面,我们再结合例题讲一类“填运算符号”问题。例4 在等号左端的两个数中间添加上运算符号,使下列各式成立:(1)4 4
4、4 424;(2)5 5 5 5 5=6。(1)因为444424,所以必须填一个“”。416,剩下的两个4只需凑成8,因此,有如下一些填法:444424;444424;444424。(2)因为5+1=6,等号左端有五个5,除一个5外,另外四个5凑成1,至少要有一个“”,有如下填法:55+5-5+56;5555-56;5555=6;56。由例4看出,填运算符号的问题一般会有多个解。这些填法都是通过对问题的综合观察、分析和试算得到的,如果只是盲目地“试算”,那么就可能走很多弯路。例5 在下式的两数中间添上四则运算符号,使等式成立:8 2 33 3。首先考察右端“3 3”,它有四种填法:3+36;
5、3-30;339; 33=1。再考察左端“8 2 3”,因为只有一个奇数3,所以要想得到奇数,3的前面只能填“”或“-”,要想得到偶数,3的前面只能填“经试算,只有两种符合题意的填法:8-2333;82-33填运算符号可加深对四则运算的理解和认识,也是培养分析能力的好内容。练习21.在下列各式中,分别代表什么数?+1635; 47-=12; -315;=36; 4=15; 84=4。2.在下列各式中,各代表什么数?(+350)3=200; (54-)40;360-710; 49-5=1。3.在下列各式中,各代表什么数?150-=;92=22。4.120是由哪四个不同的一位数字相乘得到的?试把这
6、四个数字按从小到大的次序填在下式的里:120 5.若数,同时满足=36和-=5,6.在两数中间添加运算符号,使下列等式成立:(1)5 5 5 5 53;(2)1 2 3 41。7.在下列各式的内填上合适的运算符号,使等式成立:1244=103。8.在下列各式的内填上合适的运算符号,使等式成立:123456789100;123456789100;123456789100;123456789100;123456789100;123456789100;123456789100。 答案与提示1.略。2.= 250,=54,= 50,=175。3.=50,=0或2,= 2。4.18或16或25。5.=9
7、,=4。6.(1)5-55-55= 3;(2)123-4=1。7.1244=10-3或1244=103。8.123-45-6789100;123 45 67 8 9 100;123456789100;123456789100;12345678 9100;123456789=100;12-3-45-6789100。这一讲主要讲加、减法竖式的数字谜问题。解加、减法数字谜问题的基本功,在于掌握好上一讲中介绍的运算规则(1)(2)及其推演的变形规则,另外还要掌握数的加、减的“拆分”。关键是通过综合观察、分析,找出解题的“突破口”。题目不同,分析的方法不同,其“突破口”也就不同。这需要通过不断的“学”和
8、“练”,逐步积累知识和经验,总结提高解题能力。例1 在右边的竖式中,A,B,C,D各代表什么数字?显然,C=5,D=1(因两个数字之和只能进一位)。由于A41即A5的个位数为3,且必进一位(因为43),所以A5=13,从而A13-5=8。同理,由7B1=12,即B812,得到B12-84。故所求的A=8,B=4,C=5,D=1。例2 求下面各竖式中两个加数的各个数位上的数字之和:(1)由于和的个位数字是9,两个加数的个位数字之和不大于9918,所以两个加数的个位上的两个方框里的数字之和只能是9。(这是“突破口”)再由两个加数的个位数之和未进位,因而两个加数的十位数字之和就是14。故这两个加数的
9、四个数字之和是914=23。(2)由于和的最高两位数是19,而任何两个一位数相加的和都不超过18,因此,两个加数的个位数相加后必进一位。(这是“突破口”,与(1)不同)这样,两个加数的个位数字相加之和是15,十位数字相加之和是18。所求的两个加数的四个数字之和是151833。注意:(1)(2)两题虽然题型相同,但两题的“突破口”不同。(1)是从和的个位着手分析,(2)是从和的最高两位着手分析。例3 在下面的竖式中,A,B,C,D,E各代表什么数?解减法竖式数字谜,与解加法竖式数字谜的分析方法一样,所不同的是“减法”。首先,从个位减起(因已知差的个位是5)。45,要使差的个位为5,必须退位,于是
10、,由14-D5知,D=14-59。再考察十位数字相减:由B-1-09知,也要在百位上退位,于是有10B-1-09,从而B0。百位减法中,显然E=9。千位减法中,由10A-1-37知,A1。万位减法中,由9-1-C0知,C8。所以,A1,B0,C8,D9,E9。例4 在下面的竖式中,“车”、“马”、“炮”各代表一个不同的数字。请把这个文字式写成符合题意的数字式。例3是从个位着手分析,而这里就只能从首位着手分析。由一个四位数减去一个三位数的差是三位数知,“炮”1。被减数与减数的百位数相同,其相减又是退位相减,所以,“马”9。至此,我们已得到下式:由上式知,个位上的运算也是退位减法,由11-“车”=
11、9得到“车”2。因此,符合题意的数字式为:例5 在右边的竖式中,“巧,填,式,谜”分别代表不同的数字,它们各等于多少?由(4谜)的个位数是0知,“谜”0或5。当“谜”0时,(3式)的个位数是0,推知“式”0,与“谜”“式”矛盾。当“谜”5时,个位向十位进2。由(3式+2)的个位数是0知,“式”6,且十位要向百位进2。由(2填+2)的个位数是0,且不能向千位进2知,“填”4。最后推知,“巧”1。所以“巧”1,“填”4,“式”=6,“谜”5。练习31.在下列各竖式的中填上适当的数字,使竖式成立:2.下列各竖式中,里的数字被遮盖住了,求各竖式中被盖住的各数字的和:3.在下列各竖式的中填入合适的数字,
12、使竖式成立:4.下式中不同的汉字代表19中不同的数字,相同的汉字代表相同的数字。这个竖式的和是多少?5.在下列各竖式的中填入合适的数字,使竖式成立:答案与提示练习31. (1) 764265=1029;(2) 981959=1940;(3) 99 9031002; (4) 9897 9231118。2.(1) 28;(2) 75。3.(1) 23004-185014503;(2) 1056-98967;(3) 24883-16789=8094;(4) 9123-7684=1439。4.987654321。5.提示:先解上层数谜,再解下层数谜。本讲只限于乘数、除数是一位数的乘、除法竖式数字谜问题
13、。掌握好乘、除法的基本运算规则(第2讲的公式(3)(4)及推演出的变形式子)是解乘、除法竖式谜的基础。根据题目结构形式,通过综合观察、分析,找出“突破口”是解题的关键。例1 在左下乘法竖式的中填入合适的数字,使竖式成立。由于积的个位数是5,所以在乘数和被乘数的个位数中,一个是5,另一个是奇数。因为乘积大于被乘数的7倍,所以乘数是大于7的奇数,即只能是9(这是问题的“突破口”),被乘数的个位数是5。因为797089,所以,被乘数的百位数字只能是7。至此,求出被乘数是785,乘数是9(见右上式)。例2 在右边乘法竖式的里填入合适的数字,使竖式成立。由于乘积的数字不全,特别是不知道乘积的个位数,我们
14、只能从最高位入手分析。乘积的最高两位数是2,被乘数的最高位是3,由可以确定乘数的大致范围,乘数只可能是6,7,8,9。到底是哪一个呢?我们只能逐一进行试算:(1)若乘数为6,则积的个位填2,并向十位进4,此时,乘数6与被乘数的十位上的数字相乘之积的个位数只能是5(因4+5=9)。这样一来,被乘数的十位上就无数可填了。这说明乘数不能是6。(2)若乘数为7,则积的个位填9,并向十位进4。与(1)分析相同,为使积的十位是9,被乘数的十位只能填5,从而积的百位填4。得到符合题意的填法如右式。(3)若乘数为8,则积的个位填6,并向十位进5。为使积的十位是9,被乘数的十位只能填3或8。当被乘数的十位填3时
15、,得到符合题意的填法如右式。当被乘数的十位填8时,积的最高两位为3,不合题意。(4)若乘数为9,则积的个位填3,并向十位进6。为使积的十位是9,被乘数的十位只能填7。而此时,积的最高两位是3,不合题意。综上知,符合题意的填法有上面两种。除法竖式数字谜问题的解法与乘法情形类似。例3 在左下边除法竖式的中填入适当的数,使竖式成立。由488=6即86=48知,商的百位填6,且被除数的千位、百位分别填4,8。又显然,被除数的十位填1。由1=商的个位8知,两位数1能被8除尽,只有168=2,推知被除数的个位填6,商的个位填2。填法如右上式。例3是从最高位数入手分析而得出解的。例4 在右边除法竖式的中填入
16、合适的数字。使竖式成立。从已知的几个数入手分析。首先,由于余数是5,推知除数5,且被除数个位填5。由于商4时是除尽了的,所以,被除数的十位应填2,且由于34=12,84=32,推知,除数必为3或8。由于已经知道除数5,故除数=8。(这是关键!)从84=32知,被除数的百位应填3,且商的百位应填0。从除数为8,第一步除法又出现了4,88=64,83=24,这说明商的千位只能填8或3。试算知,8和3都可以。所以,此题有下面两种填法。练习41.在下列各竖式的里填上合适的数:2.在右式中,“我”、“爱”、“数”、“学”分别代表什么数时,乘法竖式成立?3.“我”、“们”、“爱”、“祖”、“国”各代表一个
17、不同的数字,它们各等于多少时,右边的乘法竖式成立?4.在下列各除法竖式的里填上合适的数,使竖式成立:5.在下式的里填上合适的数。1.(1) 7865755055;(2)2379 8= 19032或 7379 8= 59032。2.“我”5,“爱”=1,“数”=7,“学”=2。3.“我”、“们”、“爱”、“祖”、“国”分别代表8,7,9,1,2。4.(1) 56077=801;(2) 8223=274。5.这一讲我们先介绍什么是“数列”,然后讲如何发现和寻找“数列”的规律。按一定次序排列的一列数就叫数列。例如,(1) 1,2,3,4,5,6,(2) 1,2,4,8,16,32;(3) 1,0,0
18、,1,0,0,1,(4) 1,1,2,3,5,8,13。一个数列中从左至右的第n个数,称为这个数列的第n项。如,数列(1)的第3项是3,数列(2)的第3项是4。一般地,我们将数列的第n项记作an。数列中的数可以是有限多个,如数列(2)(4),也可以是无限多个,如数列(1)(3)。许多数列中的数是按一定规律排列的,我们这一讲就是讲如何发现这些规律。数列(1)是按照自然数从小到大的次序排列的,也叫做自然数数列,其规律是:后项=前项+1,或第n项ann。数列(2)的规律是:后项=前项2,或第n项数列(3)的规律是:“1,0,0”周而复始地出现。数列(4)的规律是:从第三项起,每项等于它前面两项的和,
19、即a3=1+1=2,a4=1+2=3,a5=2+35,a6=3+5=8,a7=5+8=13。常见的较简单的数列规律有这样几类:第一类是数列各项只与它的项数有关,或只与它的前一项有关。例如数列(1)(2)。第二类是前后几项为一组,以组为单元找关系才可找到规律。例如数列(3)(4)。第三类是数列本身要与其他数列对比才能发现其规律。这类情形稍为复杂些,我们用后面的例3、例4来作一些说明。例1 找出下列各数列的规律,并按其规律在( )内填上合适的数:(1)4,7,10,13,( ),(2)84,72,60,( ),( );(3)2,6,18,( ),( ),(4)625,125,25,( ),( );
20、(5)1,4,9,16,( ),(6)2,6,12,20,( ),( ),通过对已知的几个数的前后两项的观察、分析,可发现(1)的规律是:前项+3=后项。所以应填16。(2)的规律是:前项-12=后项。所以应填48,36。(3)的规律是:前项3=后项。所以应填54,162。(4)的规律是:前项5=后项。所以应填5,1。(5)的规律是:数列各项依次为1=11, 4=22, 9=33, 16=44,所以应填55=25。(6)的规律是:2=12,6=23,12=34,20=45,所以,应填 56=30, 67=42。说明:本例中各数列的每一项都只与它的项数有关,因此an可以用n来表示。各数列的第n项
21、分别可以表示为(1)an3n+1;(2)an96-12n;(3)an23n-1;(4)an55-n;(5)ann2;(6)ann(n+1)。这样表示的好处在于,如果求第100项等于几,那么不用一项一项地计算,直接就可以算出来,比如数列(1)的第100项等于3100+1=301。本例中,数列(2)(4)只有5项,当然没有必要计算大于5的项数了。例2 找出下列各数列的规律,并按其规律在( )内填上合适的数:(1)1,2,2,3,3,4,( ),( );(2)( ),( ),10,5,12,6,14,7;(3) 3,7,10,17,27,( );(4) 1,2,2,4,8,32,( )。通过对各数列
22、已知的几个数的观察分析可得其规律。(1)把数列每两项分为一组,1,2,2,3,3,4,不难发现其规律是:前一组每个数加1得到后一组数,所以应填4,5。(2)把后面已知的六个数分成三组:10,5,12,6,14,7,每组中两数的商都是2,且由5,6,7的次序知,应填8,4。(3)这个数列的规律是:前面两项的和等于后面一项,故应填( 17+27=)44。(4)这个数列的规律是:前面两项的乘积等于后面一项,故应填(832=)256。例3 找出下列各数列的规律,并按其规律在( )内填上合适的数:(1)18,20,24,30,( );(2)11,12,14,18,26,( );(3)2,5,11,23,
23、47,( ),( )。(1)因20-18=2,24-20=4,30-24=6,说明(后项-前项)组成一新数列2,4,6,其规律是“依次加2”,因为6后面是8,所以,a5-a4=a5-30=8,故a5=8+30=38。(2)12-11=1,14-12=2, 18-14=4, 26-18=8,组成一新数列1,2,4,8,按此规律,8后面为16。因此,a6-a5a6-26=16,故a616+26=42。(3)观察数列前、后项的关系,后项=前项2+1,所以a6=2a5+1247+195,a72a6+1295+1=191。例4 找出下列各数列的规律,并按其规律在( )内填上合适的数:(1)12,15,1
24、7,30, 22,45,( ),( );(2) 2,8,5,6,8,4,( ),( )。(1)数列的第1,3,5,项组成一个新数列12,17, 22,其规律是“依次加5”,22后面的项就是27;数列的第2,4,6,项组成一个新数列15,30,45,其规律是“依次加15”,45后面的项就是60。故应填27,60。(2)如(1)分析,由奇数项组成的新数列2,5,8,中,8后面的数应为11;由偶数项组成的新数列8,6,4, 中,4后面的数应为2。故应填11,2。练习5按其规律在下列各数列的( )内填数。1.56,49,42,35,( )。2.11, 15, 19, 23,( ),3.3,6,12,24,( )。4.2,3,5,9,17,( ),5.1,3,4,7,11,( )。6.1,3,7,13,2
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1