ImageVerifierCode 换一换
格式:DOCX , 页数:12 ,大小:139.98KB ,
资源ID:19179673      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/19179673.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(高级数据链路控制规程HDLCWord文档格式.docx)为本站会员(b****6)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

高级数据链路控制规程HDLCWord文档格式.docx

1、数据链路上传输的基本单位是帧。帧控制功能要求发送站把网络送来的数据信息分成若干码组,在每个码组中加入地址字段、控制字段、校验字段以及帧开始和结束标志,组成帧来发送;要求接收端从收到的帧中去掉标志字段,还原成原始数据信息后送到网络层。 帧同步在传输过程中必须实现帧同步,以保证对帧中各个字段的正确识别。 差错控制当数据信息在物理链路中传输出现差错,数据链路控制规程要求接收端能检测出差错并予以恢复,通常采用的方法有自动请求重发ARQ和前向纠错两种。采用ARQ方法时,为了防止帧的重收和漏收,常对帧采用编号发送和接收。当检测出无法恢复的差错时,应通知网络层做相应处理。 流量控制流量控制用于克服链路的拥塞

2、。它能对链路上信息流量进行调节,确保发送端发送的数据速率与接收端能够接收的数据速率相容。常用的流量控制方法是滑动窗口控制法。 链路管理数据链路的建立、维持和终止,控制信息的传输方向,显示站的工作状态,这些都属于链路管理的范畴。 透明传输规程中采用的标志和一些字段必须独立于要传输的信息,这就意味着数据链路能够传输各种各样的数据信息,即传输的透明性。 寻址在多点链路中,帧必须能到达正确的接收站。 异常状态恢复 当链路发生异常情况时,如收到含义不清的序列或超时收不到响应等,能自动重新启动,恢复到正常工作状态。13 数据链路控制规程分类为了适应数据通信的需要,ISO、ITU-T以及一写国家和大的计算机

3、制造公司,先后制定了不同类型的数据链路控制规程。根据帧控制的格式,可以分为面向字符型、面向比特型。 面向字符型国际标准化组织制定的ISO 1745、IBM公司的二进制同步规程BSC以及我国国家标准GB3543-82属于面向字符型的规程,也称为基本型传输控制规程。在这类规程中,用字符编码集中的几个特定字符来控制链路的操作,监视链路的工作状态,例如,采用国际5号码中的SOH、STX作为帧的开始,ETX、ETB作为的结束,ENQ、EOT、ACK、NAK等字符控制链路操作。面向字符型规程有一个很大的缺点,就是它与所用的字符集有密切的关系,使用不同字符集的两个站之间,很难使用该规程进行通信。面向字符型规

4、程主要适用于中低速异步或同步传输,很适合于通过电话网的数据通信。 面向比特型ITU-T制定的X.25建议的LAPB、ISO制定的HDLC、美国国家标准ADCCP、IBM公司的SDLC等均属于面向比特型的规程。在这类规程中,采用特定的二进制序列01111110作为帧的开始和结束,以一定的比特组合所表示的命令和响应实现链路的监控功能,命令和响应可以和信息一起传送。所以它可以实现不编码限制的、高可靠和高效率的透明传输。面向比特型规程主要适用于中高速同步半双工和全双工数据通信,如分组交换方式中的链路层就采用这种规程。随着通信的发展,它的应用日益广泛。2HDLC基本概念21 主站、从站、复合站HDLC涉

5、及三种类型的站,即主站、从站和复合站。主站的主要功能是发送命令(包括数据信息)帧、接收响应帧,并负责对整个链路的控制系统的初启、流程的控制、差错检测或恢复等。从站的主要功能是接收由主站发来的命令帧,向主站发送响应帧,并且配合主站参与差错恢复等链路控制。复合站的主要功能是既能发送,又能接收命令帧和响应帧,并且负责整个链路的控制。22 HDLC链路结构在HDLC中,对主站、从站和复合站定义了三种链路结构,如图2所示。图2 HDLC链路结构类型23 操作方式根据通信双方的链路结构和传输响应类型,HDLC提供了三种操作方式:正常响应方式、异步响应方式和异步平衡方式。 正常响应方式(NRM)正常响应方式

6、(NRM)适用于不平衡链路结构,即用于点-点和点-多点的链路结构中,特别是点-多点链路。这种方式中,由主站控制整个链路的操作,负责链路的初始化、数据流控制和链路复位等。从站的功能很简单,它只有在收到主站的明确允许后,才能发出响应。 异步响应方式(ARM)异步响应方式(ARM)也适用于不平衡链路结构。它与NRM不同的是:在ARM方式中,从站可以不必得到主站的允许就可以开始数据传输。显然它的传输效率比NRM有所提高。 异步平衡方式(ABM)异步平衡方式(ABM)适用于平衡链路结构。链路两端的复合站具有同等的能力,不管哪个复合站均可在任意时间发送命令帧,并且不需要收到对方复合站发出的命令帧就可以发送

7、响应帧。ITU-T X.25建议的数据链路层就采用这种方式。除三种基本操作方式,还有三种扩充方式,即扩充正常响应方式(SNRM)、扩充异步响应方式(SARM)、扩充异步平衡方式(SABM)它们分别与基本方式相对应。3HDLC帧结构HDLC的帧格式如图3所示,它由六个字段组成,这六个字段可以分为五中类型,即标志序列(F)、地址字段(A)、控制字段(C)、信息字段(I)、帧校验字段(FCS)。在帧结构中允许不包含信息字段I。 图3 HDLC帧结构 标志序列(F)HDLC指定采用01111110为标志序列,称为F标志。要求所有的帧必须以F标志开始和结束。接收设备不断地搜寻F标志,以实现帧同步,从而保

8、证接收部分对后续字段的正确识别。另外,在帧与帧的空载期间,可以连续发送F,用来作时间填充。在一串数据比特中,有可能产生与标志字段的码型相同的比特组合。为了防止这种情况产生,保证对数据的透明传输,采取了比特填充技术。当采用比特填充技术时,在信码中连续5个“1”以后插入一个“0”;而在接收端,则去除5个“1”以后的“0”,恢复原来的数据序列,如图4所示。比特填充技术的采用排除了在信息流中出现的标志字段的可能性,保证了对数据信息的透明传输。数据中某一段比特组合恰好 0 0 1 0 0 1 1 1 1 1 1 0 0 0 1 0 1 0 出现和F字段一样的情况 会误认为是F字段 发送端在5个连1之后

9、0 0 1 0 0 1 1 1 1 1 0 1 0 0 0 1 0 1 0 填入0比特再发送出去 填入0比特在接收端将5个连1之后 0 0 1 0 0 1 1 1 1 1 1 0 0 0 1 0 1 0图4 比特填充当连续传输两帧时,前一个帧的结束标志字段F可以兼作后一个帧的起始标志字段。当暂时没有信息传送时,可以连续发送标志字段,使接收端可以一直保持与发送端同步。 地址字段(A)地址字段表示链路上站的地址。在使用不平衡方式传送数据时(采用NRM和ARM),地址字段总是写入从站的地址;在使用平衡方式时(采用ABM),地址字段总是写入应答站的地址。地址字段的长度一般为8bit,最多可以表示256

10、个站的地址。在许多系统中规定,地址字段为“11111111”时,定义为全站地址,即通知所有的接收站接收有关的命令帧并按其动作;全“0”比特为无站地址,用于测试数据链路的状态。因此有效地址共有254个之多,这对一般的多点链路是足够的。但考虑在某些情况下,例如使用分组无线网,用户可能很多,可使用扩充地址字段,以字节为单位扩充。在扩充时,每个地址字段的第1位用作扩充指示,即当第1位为“0”时,后续字节为扩充地址字段;当第1位为“1”时,后续字节不是扩充地址字段,地址字段到此为止。 控制字段(C)控制字段用来表示帧类型、帧编号以及命令、响应等。从图5-11可见,由于C字段的构成不同,可以把HDLC帧分

11、为三种类型:信息帧、监控帧、无编号帧,分别简称I帧(Information)、S帧(Supervisory)、U帧(Unnumbered)。在控制字段中,第1位是“0”为I帧,第1、2位是“10”为S帧,第1、2位是“11”为U帧,它们具体操作复杂,在后面予以介绍。另外控制字段也允许扩展。 信息字段(I)信息字段内包含了用户的数据信息和来自上层的各种控制信息。在I帧和某些U帧中,具有该字段,它可以是任意长度的比特序列。在实际应用中,其长度由收发站的缓冲器的大小和线路的差错情况决定,但必须是8bit的整数倍。 帧校验序列字段(FCS)帧校验序列用于对帧进行循环冗余校验,其校验范围从地址字段的第1

12、比特到信息字段的最后一比特的序列,并且规定为了透明传输而插入的“0”不在校验范围内。4控制字段和参数控制字段是HDLC的关键字段,许多重要的功能都靠它来实现。控制字段规定了帧的类型,即I帧、S帧、U帧,控制字段的格式如图3所示,其中N(S) 发送帧序列编号N(R) 期望接收的帧序列编号,且是对N(R)以前帧的确认S 监控功能比特M 无编号功能比特 P/F 查询/结束(Poll/Final)比特,作为命令帧发送时的查询比特,以P位出现;作为响应帧发送时的结束比特,以F位出现。下面对三种不同类型的帧分别予以介绍。41 信息帧(I帧)I帧用于数据传送,它包含信息字段。在I帧控制字段中b1b3比特为N

13、(S),b5b7比特为N(R)。由于是全双工通信,所以通信每一方都各有一个N(S)和N(R)。这里要特别强调指出:N(R)带有确认的意思,它表示序号为N(R)-1以及在这以前的各帧都已经正确无误地收妥了。为了保证HDLC的正常工作,在收发双方都设置两个状态变量V(S)和V(R)。V(S)是发送状态变量,为发送I帧的数据站所保持,其值指示待发的一帧的编号;V(R)是接收状态变量,其值为期望所收到的下一个I帧的编号。可见这两个状态变量的值确定发送序号N(S)和接收序号N(R)。 在发送站,每发送一个I帧,V(S)N(S),然后V(S)+1V(S)。在接收站,把收到的N(S)与保留的V(R)作比较,

14、如果这个I帧可以接收,则V(R)+1N(R),回送到发送站,用于对前面所收到的I帧的确认。N(R)除了可以用I帧回送之外,还可以用S帧回送,这一点从图5-11中可以看出来,在I帧和S帧的控制字段中具有N(R)。V(S)、V(R)和N(S)、N(R)都各占3bit,即序号采用模8运算,使用07八个编号。在有些场合,如卫星通信模8已经不能满足要求了,这时可以把控制字段扩展为两个字节,N(S)、N(R)和V(S)、V(R)都用7bit来表示,即增加到模128。42 监控帧(S帧)监控帧用于监视和控制数据链路,完成信息帧的接收确认、重发请求、暂停发送请求等功能。监控帧不具有信息字段。监控帧共有4种,表

15、1是这4种监控帧的代码、名称和功能。表1 监控帧的名称和功能记忆符名 称比特功 能b2b3RR接收准备好确认,且准备接受下一帧,已收妥N(R)以前的各帧RNR接收未准备好1确认,暂停接收下一帧,N(R)含义同上REJ拒绝接收否认,否认N(R)起的各帧,但N(R)以前的帧已收妥SREJ选择拒绝接收否认,只否认序号为N(R)的帧上面四种监控帧中,前三种用在返回N连续ARQ方法中,最后一种只用于选择重发ARQ方式中。S帧中没有包含用户的数据信息字段,它只有48bit长,显然不需要N(S),但S帧中N(R)特别有用,它具体含义随不同的S帧类型而不同。其中RR帧和RNR帧相当于确认信息ACK,REJ帧相

16、当于否认信息NAK。同时应当注意到,RR帧和RNR帧还具有流量控制的作用,RR帧表示已经作好表示接收帧的准备,希望对方继续发送,而RNR帧则表示希望对方停止发送(这可能是由于来不及处理到达的帧或缓冲器已存满)。43 无编号帧(U帧)无编号帧用于数据链路的控制,它本身不带编号,可以在任何需要的时刻发出,而不影响带编号的信息帧的交换顺序。它可以分为命令帧和响应帧。用5个比特位(即M1、M2)来表示不同功能的无编号帧。HDLC所定义的无编号帧名称和代码见表2。表2 无编号帧的名称和代码类型M1M2命令响应b3 b4b6 b7 b8SNRM置正常响应模式C0 00 0 1SARM/DM置异步响应模式/

17、断开方式R1 10 0 0SABM置异步平衡模式1 0 0SNRME置扩充正常响应模式0 1 1SARME置扩充异步响应模式0 1 0SABME置扩充异步平衡模式1 1 0DISC/RD断链/请求断链SIM/RIM置初始化方式/请求初始化方式1 0UP无编号探询UI无编号信息XID交换识别1 0 1RESET复位FRMR帧拒绝UA无编号确认44 P/F比特的使用值得注意的是在HDLC的各类帧中,均带有查询/结束(P/F)比特。在不同的数据传送方式中,P/F比特的用法是不一样的,在NRM方式中,从站不能主动向主站发送信息,从站只有收到主站发出的P比特为1(对从站的查询)的命令帧以后才能发送响应帧

18、。若从站有数据发送,则在最后一个数据帧中将F比特置1;若无数据发送,则应在回答的S帧中将F比特置1。在ARM或ABM方式中,任何一个站都可以在主动发送的S帧和I帧中将P比特置1。对方站收到 P=1的帧后,应尽早地回答本站的状态并将F比特置1。下面结合图5的例子具体说明P/F比特的使用方法。图中主站A和从站B、C连成多点链路,传送帧的一些主要参数按照“地址,帧名和序号,P/F”的先后顺序标注。这里的地址是指地址字段中应填入的站地址;帧名是指帧的名称,如RR、I;序号是指监控帧中的N(R) 或信息帧中的N(S)N(R),如RR4、I31(第1个数字是N(S),第2个数字是N(R)。P/F是在其为1

19、时才写上P或F,表明此时控制字段的第5比特为1。图5 P/F比特的使用方法主站A先询问B站:“B站,若有信息,请立刻发送”。这时A站发送的帧是RR监控帧,并将N(R)置0,表示期望收到对方的0号帧。因此在图5-13中将这样的帧记为“B,RR0,P ”。对主站的这一命令,B站响应以连续4个信息帧,其序号N(S)从0到3。最后在第4个信息帧中将F置1,表示“我要发送的信息已发完”。这个帧记为“B,I30,F”。A站在收到B站发来的4个信息帧后,发回确认帧RR4(这时N(R)=4)。我们注意到这时P/F比特并未置1,所以B站收到RR4后不必应答。接下去A站轮询C站,P=1,虽然这时C站没有数据发送,

20、但也必须立即应答。C站应答也是RR帧,表示目前没有信息帧发送,F=1表明这是回答对方命令的一个响应。有了P/F比特,使HDLC规程使用起来更加灵活。在两个复合站全双工通信时,任何一方都可随时使P=1,这时对方就要立即回答RR帧,并置F=1,这样就可以收到对方的确认了。如果不使用P/F比特,则收方不一定马上发出确认帧,比如收方可以在发送自己的信息帧时,利用N(R)把确认信息发出。5HDLC操作在图5中讨论了主站A和从站B、C交换信息的情况,这只是整个数据通信的中间阶段,在这个阶段之前还有一个数据链路的建立阶段,在数据传送完毕后,还必须有一个数据链路的释放阶段。也就是说HDLC执行数据传输控制功能

21、,一般分为3个阶段:数据链路建立阶段、信息帧传送阶段、数据链路释放阶段。第2阶段的完成需要用到信息帧和监控帧,第1、3阶段的完成需要用到无编号帧。图6画出了多点链路的建立和释放。主站A先向从站B发出置正常响应模式SNRM的命令,并将P置1,要求B站作出响应。B站同意建立链路后,发送无编号确认UA的响应,将F置1。A站和B站在将其状态变量V(S)和V(R)进行初始化后,就完成了数据链路的建立。接着A站开始与C站建立链路。 图6 多点链路的建立和释放当数据传送完毕后,A站分别向B站和C站发出断链命令DISC,B站、C站用无编号确认帧UA响应,数据链路就释放了。图7为点对点链路中两个站都是复合站的情

22、况。复合站中的一个站先发出置异步平衡模式SABM的命令,对方回答一个无编号响应帧UA后,即完成了数据链路的建立。由于两个站是平等的,任何一个站均可在数据传送完毕后发出DISC命令提出断链的要求,对方用UA帧响应,完成数据链路的释放。6HDLC规程的特点与面向字符的基本型传输控制规程相比较,HDLC具有以下特点:HDLC对任意比特组合的数据均能透明传输。“透明”是一个很重要的术语,它表示:某一个实际存在的事物看起来好象不存在一样。“透明传输”表示经实际电路传送后的数据信息没有发生变化。因此对所传送数据信息来说,由于这个电路并没有对其产生什么影响,可以说数据信息“看不见”这个电路,或者说这个电路对该数据信息来说是透明的。这样任意组合的数据信息都可以在这个电路上传送。 可靠性高在HDLC规程中,差错控制的范围是除了F标志的整个帧,而基本型传输控制规程中不包括前缀和部分控制字符。另外HDLC对I帧进行编号传输,有效地防止了帧的重收和漏收。 传输效率高在HDLC中,额外的开销比特少,允许高效的差错控制和流量控制。 适应性强HDLC规程能适应各种比特类型的工作站和链路。 结构灵活在HDLC中,传输控制功能和处理功能分离,层次清楚,应用非常灵活。最后需要指出,一般的应用极少需要使用HDLC的全集,而选用HDLC的子集。当使用某一厂商的HDLC时,一定要弄清该厂商所选用的子集是什么。

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1