1、Rl=0;IRl=U/(R+Rl);fprintf(IRl= %8.1f A n,IRl)URl=IRl*Rl;URl= %8.1f V n,URl)PRl=IRl*URl;IRl= %8.1f W n,PRl)输出结果:IRl= 8.0 A URl= 0.0 V IRl= 0.0 W IRl= 6.0 A URl= 12.0 V IRl= 72.0 W IRl= 4.8 A URl= 19.2 V IRl= 92.2 W IRl= 4.0 A URl= 24.0 V IRl= 96.0 W IRl= 3.0 A URl= 30.0 V IRl= 90.0 W IRl= 2.0 A URl=
2、36.0 V IRl= 1.6 A URl= 38.4 V IRl= 61.4 W IRl= 1.0 A URl= 42.0 V IRl= 42.0 W IRl= 0.5 A URl= 45.0 V IRl= 22.5 W IRl= 0.3 A URl= 46.5 V IRl= 11.6 W 实验三 正弦稳态1 学习正弦交流电路的分析方法2 学习matlab复数的运算方法1、如图3-5所示(图见25页),设R1=2,R2=3,R3=4,jxl=j2,-jxc1=-j3,-jxc2=-j5,s1=80,s2=60s3=80s4=150,求各支路的电流向量和电压向量。R1=2;R2=3;R3=4;
3、RL=2*1j;Rc1=-3*1j;Rc2=-5*1j;Us1=8*exp(0j*pi/180);Us2=6*exp(0j*pi/180);Us3=8*exp(0j*pi/180);Us4=15*exp(0j*pi/180);a11=RL+R1;a12=0;a13=0;a14=-R1;a21=0;a22=-R2-Rc1;a23=0;a24=Rc1;a31=0;a32=0;a33=R3+Rc2;a34=-R3;a41=R1;a42=Rc1;a43=R3;a44=-R1-Rc1-R3;A=a11,a12,a13,a14;a21,a22,a23,a24;a31,a32,a33,a34;a41,a42
4、,a43,a44;B=8 6 -7 8;I=inv(A)*B;IR1=I(1)-I(4);IR2=I(2);IR3=I(3)-I(4);IRc1=I(2)-I(4);IRc2=I(3);IRL=I(1);Ua=Us1-I(1)*RL;Ub=Us3-R3*IR3;disp(UaUb IR1 IR2 IR3 IRc1 IRc2 IRL)幅值),disp(abs(Ua,Ub,IR1,IR2,IR3,IRc1,IRc2,IRL)相角),disp(angle(Ua,Ub,IR1,IR2,IR3,IRc1,IRc2,IRL)ha=compass(Ua,Ub,IR1,IR2,IR3,IRc1,IRc2,IR
5、L);set(ha,linewidth,3)ua =3.7232 - 1.2732iub =4.8135 + 2.1420iI1 =1.2250 - 2.4982iI2 =-0.7750 + 1.5018iI3 =0.7750 + 1.4982iI1R =1.8616 - 0.6366iI1L =-0.6366 + 2.1384iI2C =-1.1384 + 0.3634iI2R =2.3634 + 1.1384iI3R =-0.7966 + 0.5355iI3C =-0.4284 - 2.0373i2、含互感的电路:复功率如图3-6所示(书本26页),已知R1=4,R2=R3=2,XL1=1
6、0,XL2=8,XM=4,XC=8,S=100V,A。R1=4;R2=2;R3=2;R4=6*1j;R5=4*1j;R6=4*1j;R7=-8*1j;Us=10*exp(0j*pi/180);Is=10*exp(0j*pi/180);a11=1/R1+1/R7+1/R4;a12=-1/R4;a21=-1/R4;a22=1/R4+1/(R5+R2)+1/R6;a23=-1/(R5+R2);a32=-1/(R5+R2);a33=1/(R5+R2)+1/R3;A=a11,a12,a13;a21,a22,a23;a31,a32,a33;B=2.5 0 10;U=inv(A)*B;Pus=Us*(Us-
7、U(1)/R1;Pis=U(3)*Is;Pus Pis),disp(abs(Pus,Pis),disp(angle(Pus,Pis)*180/pi)ha=compass(Pus,Pis);输出结果Pus=-4.0488 + 9.3830iPis=1.750e+002 + 3.23901e+001i3、正弦稳态电路:求未知参数如图所示3-6(书本26页),已知Us=100V,I1=100mA电路吸收功率P=6W,XL1=1250,XC=750,电路呈感性,求R3及XLZ1=1250*1j;Z2=-750*1j;Us=100*exp(0j*pi/180);Is=0.1*exp(-53.13j*pi
8、/180);Z=inv(Is)*Us;Z3=Z2*(Z-Z1)/(Z1+Z2-Z);Z3),disp(abs(Z3),disp(angle(Z3)*180/pi)ha=compass(Z3);7.5000e+002 + 3.7500e+002i4、正弦稳态电路,利用模值求解图3-7所示电路中(书本27页),已知IR=10A,XC=10,并且U1=U2=200V,求XLXL1=2000/(200-100*1.732)XL2=2000/(200+100*1.732)XL1= %8.4f n,XL1)XL2= %8.4f n,XL2)XL1= 74.6410XL2 =5.359实验四 交流分析和网络
9、函数1、学习交流电路的分析方法2、学习交流电路的MATLAB分析方法1、电路图如图所示(书本30页),求电流i1(t)和电压v(t)使用MATLAB命令计算为R=10-7.5*1j 5*1j-6; 6-5*1j -16-3*1j;U1=5*exp(0*1j*pi/180);U2=2*exp(75*1j*pi/180);U=U1 U2;I=inv(R)*U;I1_abs=abs(I(1);I1_ang=angle(I(1)*180/pi;voltage I1, magnitude: %f n voltage I1,angle in degree:%f,I1_abs,I1_ang)V=(I(1)-
10、I(2)*(-10*1j);VC_abs=abs(V);VC_ang=angle(V)*180/pi;voltage VC, magnitude: %f n voltage VC,angle in degree:,VC_abs,VC_ang) 0.387710 voltage I1,angle in degree:15.01925 4.218263 voltage VC,angle in degree:-40.861691所以电流i1(t)=0.3877cos(1000t+15.0193同时电压v(t)=4.2183cos(1000t-40.86172、在4-4图里(见书本30页),显示一个不
11、平衡的wye-wye系统,求相电压Van,Vbn,Vcn使用MATLAB命令为:Ub=110*exp(-120*1j*pi/180);Uc=110*exp(120*1j*pi/180);Z1=1+1*1j;Z2=5+12*1j;Z3=1-2*1j;Z4=3+4*1j;Z5=1-0.5*1j;Z6=5-12*1j;Za=Z1+Z2;Zb=Z3+Z4;Zc=Z5+Z6;Ia=Ua/Za;Ib=Ub/Zb;Ic=Uc/Zc;V1=Ia*Z2;Van_abs=abs(V1);Van_ang=angle(V1)*180/pi;voltage Van, magnitude: %f n voltage Va
12、n,angle in degree:,Van_abs,Van_ang)V2=Ib*Z4;Vbn_abs=abs(V2);Vbn_ang=angle(V2)*180/pi;voltage Vbn, magnitude: %f n voltage Vbn,angle in degree:,Vbn_abs,Vbn_ang)V3=Ic*Z6;Vcn_abs=abs(V3);Vcn_ang=angle(V3)*180/pi;voltage Vcn, magnitude: %f n voltage Vcn,angle in degree:,Vcn_abs,Vcn_ang)Van, magnitude: 9
13、9.875532 voltage Van,angle in degree:2.155276 122.983739 voltage Vbn,angle in degree:-93.434949 103.134238 voltage Vcn,angle in degree:116.978859实验五 动态电路1、学习动态电路的分析方法2、学习动态电路的matlab计算方法1、正弦激励的一阶电路如图5-5所示(书本36页),已知R2=2,C=0.5F,电容的初始电压Uc(0+)=4V,激励的正弦电压Us(t)=Umcost,其中=2rad/s,当t=0时,开关s闭合,求电容电压的全响应,区分其暂态响
14、应与稳态响应,并画出波形。Um=10R=2;Zc=-1i;Uc0=4;t=0:0.1:10;Us=10*cos(2*t);Ucf1=10;T=0.5*R;Uc=Us*Zc/(Zc+R)+(Uc0-Ucf1)*exp(-t/T);figure(1),plot(t,Uc),grid2、二阶欠阻尼电路的零输入响应如图5-5的二阶电路,如L=0.5H,C=0.02F.初始值uc(0)=1v,il=0,试研究R分别为1,2,3,4,5,6,7,8,9,10时,uc(t)和il(t)的零输入响应,并画出波形。clear,format compactL=0.5;C=0.02;R=1;Uc0=1;IL0=0;
15、alpha=R/(2*L);wn=sqrt(1/(L*C);p1=-alpha+sqrt(alpha2-wn2);p2=-alpha-sqrt(alpha2-wn2);Uc1=(p2*Uc0-IL0/C)/(p2-p1)*exp(p1*t);Uc2=-(p1*Uc0-IL0/C)/(p2-p1)*exp(p2*t);Uc=Uc1+Uc2;IL1=p1*C*(p2*Uc0-IL0/C)/(p2-p1)*exp(p1*t);IL2=-p2*C*(p1*Uc0-IL0/C)/(p2-p1)*exp(p2*t);IL=IL1+IL2;subplot(2,2,1),plot(t,Uc),gridsubp
16、lot(2,1,2),plot(t,IL),grid分别取R=1,2,3 10;结果如下:R=1R=2R=3R=5R=8实验六 频率响应1、学习有关频率响应的相关概念2、学习matlab的频率计算1、一阶低通电路的频率响应如图6-1所示(书本37页),若以c为响应,求频率响应函数,并画出其幅频响应和相频响应。ww=0:0.2:4;H=1./(1+j*ww);figure(1)subplot(2,1,1),plot(ww,abs(H),grid,xlabel(ww),ylabel(angle(H);subplot(2,1,2),plot(ww,angle(H),figure(2)subplot(
17、2,1,1),semilogx(ww,20*log10(abs(H),?subplot(2,1,2),semilogx(ww,angle(H),ylabel(A 线性频率B对数频率特性2、频率响应:二阶低通电路由书本上二阶低通的典型函数以及后面的推论。for Q=1/3,1/2,1/sqrt(2),1,2,5ww=logspace(-1,1,50);H=1./(1+j*ww/Q+(j*ww).2);subplot(2,1,1),plot(ww,abs(H),hold onsubplot(2,1,2),plot(ww,angle(H),hold onsubplot(2,1,1),semilogx
18、(ww,20*log10(abs(H),hold onsubplot(2,1,2),semilogx(ww,angle(H),hold onendfigure(1),subplot(2,1,1),grid,xlable(w),ylable(abs(H)subplot(2,1,2),grid,xlable(angle(H)figure(2),subplot(2,1,1),grid,xlable(3、频率响应:二阶带通电路图6-5(书本40页)是互耦的串联和并联的谐振电路,根据其频率响应函数和推论,使用matlab命令为:H0=1;wn=1;for Q=5,10,20,50,100 w=logsp
19、ace(-1,1,50); H=H0./(1+j*Q*(w./wn-wn./w); figure(1) subplot(2,1,1),plot(w,abs(H),grid,hold on subplot(2,1,2),plot(w,angle(H),grid,hold on figure(2) subplot(2,1,1),semilogx(w,20*log10(abs(H),grid,hold on subplot(2,1,2),semilogx(w,angle(H),grid,hold onA 线性频率特性B 对数频率特性4、复杂谐振电路的计算图6-7(书本41页)为一双电感并联电路,已知
20、Rs=28.2K,R1=2,R2=3,L1=0.75mH, L2=0.25mH,C=1000pF。求回路的通频带以及回路阻抗大于50k的频率范围。使用matlab命令为:L1=0.75e-3;L2=0.25e-3;C=1000e-12;Rs=28200;L=L1+L2;R=R1+R2;Rse=Rs*(L/L1)2f0=1/(2*pi*sqrt(C*L)Q0=sqrt(L/C)/R,R0=L/C/R;Re=R0*Rse/(R0+Rse)Q=Q0*Re/R0,B=f0/Q,s=log10(f0);f=logspace(s-.1,s+.1,501);w=2*pi*f;z1e=R1+j*w*L;z2e
21、=R2+1./(j*w*C);ze=1./(1./z1e+1./z2e+1./Rse);subplot(2,1,1),loglog(w,abs(ze),gridaxis(min(w),max(w),0.9*min(abs(ze),1.1*max(abs(ze)subplot(2,1,2),semilogx(w,angle(ze)*180/pi)axis(min(w),max(w),-100,100),gridfh=w(find(abs(1./(1./z1e+1./z2e)50000)/2/pi;fhmin=min(fh),fhmax=max(fh),谐振频率处的幅频和相频特性Rse =5.0133e+004f0 =1.5915e+005Q0 =200Re =4.0085e+004Q =40.0853B =3.9704e+003fhmin =1.5770e+005fhmax =1.6063e+005谐振频率f0=159.15Hz空载品质因数Q0=200等效信号源内阻Rse=5.0133e+004考虑内阻后的品质因数Q=40.0853通频带B=3.9704e+003回路阻抗大于50K的频率范围谐振频率附近的幅频和相频特性曲线见上图。
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1