ImageVerifierCode 换一换
格式:DOCX , 页数:4 ,大小:21.32KB ,
资源ID:18784912      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/18784912.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(基于RecurDyn的圆锥滚子轴承打滑特性研究文档格式.docx)为本站会员(b****5)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

基于RecurDyn的圆锥滚子轴承打滑特性研究文档格式.docx

1、文献4推导出计算圆柱滚子轴承打滑的方法。文献5针对圆锥滚子轴承,分析了保持架的打滑、滚动体的滑动等行为,但考虑的工况较少。文献6提出了一种通过实验检测了高速球轴承保持架平均打滑度及瞬时打滑度的新方法。文献7针对圆柱滚子轴承,分析了加速、涡动、间隙等参数对打滑的影响。文献8将圆柱滚子轴承的保持架视为柔性体,研究了在高速下不同参数下对保持架打滑的影响。但总体来说,国内外针学者对轴承打滑特性的研究,以球轴承和圆柱滚子轴承偏多,圆锥滚子轴承偏少。因此建立圆锥滚子轴承的打滑模型,研究更多工况条件对轴承打滑的影响,可为以后的轴承设计、防止打滑提供理论参考。 2 圆锥滚子轴承打滑动力学分析 2.1 圆锥滚子

2、轴承运动学分析 由于轴承内部运动较为复杂,在研究轴承运动关系前,常作如下假设9:滚动体与内外滚道间的滚动为纯滚动;忽略各零件的接触变形,将它们视为刚体;滚子的质心与几何中心重合;忽略游隙和润滑油膜的影响。 取通过滚子质心O且垂直于滚子轴线的截面为研究对象,该截面与内、外圈滚道的接触点分别为A,B两点,其运动关系图,如图1所示。轴承节圆直径Dm,点B,A对应的转动直径分别为 Di,De,滚子节圆直径 dm,滚子与内、外滚道接触角 i,e,内外圈的转速分别为 i,e。 图1 圆锥滚子轴承运动关系图Fig.1 Kinematic Relational Graph of Tapered Roller

3、Bearing 当处于纯滚动状态时,滚子与内外滚道的接触线速度应相等,分别为: 其中,=dm cos/Dm,滚子平均接触角 =(i+e)/2。 若滚子与内外滚道接触点不存在滑动,在纯滚动的状态下,则在任意一个垂直于滚子轴线的截面内,截面中心的线速度Vm应为内外圈接触点线速度和的一半,其值为: 滚子的公转角速度即保持架的角速度为: 保持架与内圈角速度之差为: A点的滚子线速度等于内滚道线速度,即: 由式(6)可求得滚子的自转角速度为: 假设轴承内圈转动,外圈固定即Ve=0时,则保持架的角速度和滚子的自转角速度及两者之间的关系分别为: 若轴承发生打滑,m、r将不会满足式(8)、式(9)的运动关系。

4、 由于滚子的运动状态不易检测,故常用保持架打滑作为衡量轴承打滑的指标。保持架的打滑率为: 式中:ct保持架的实际角速度;c保持架的理论角速度。 2.2 轴承内部各零件间相互作用力 轴承内部作用力主要存在于滚子与内外圈、保持架之间,选取轴承中第j个滚子进行分析,采用“切片法”研究滚子与内外圈滚道、保持架之间的作用力,其中滚子与内外圈作用力,如图2所示。 图2 滚子与内外圈作用力Fig.2 The Interaction Forces Between Roller,Inner and Outer Rings 图中:Qijk,MQijk,Qejk,MQejk第 k 个滚子切片与内外圈滚道的接触力及其

5、力矩,其中, 式中:K(ie),(ie)jk第k个切片与内外滚道的接触刚度和弹性变形10。 Tijk,MTijk,Tejk,MTejk第 k 个滚子切片与内外圈滚道间润滑油膜产生的拖动力及其力矩,其中, 式中:i(e)jk第K个切片的油膜拖动系数11。 Qfj,MQfyj,MQfzj滚子端面与内圈大挡边之间的接触力及其力矩,其中, 式中:E两接触点的当量弹性模量;弹性变形量;k=1.0339(R/R)0.636;R,R零接触点处滚子与挡边的等效曲率半径;=1.003+0.5968R/R;1/R=1/R+1/R;=1.5227+0.6023ln(R /R)。 Ffj,MFfj滚子大端面与内圈挡边

6、之间的摩擦力及其力矩,其中, 式中:fj接触摩擦因数。 滚子与保持架的作用力,如图3所示。图中:Qcjk1,Qcjk2第k个切片与保持架接触力,其中, 式中:A=1.360.9,综合弹性常数;L滚子接触长度。 Ffcjk1,Ffcjk2,MFfcjk第k个滚子切片与保持架的摩擦力及其力矩。其中, 式中:摩擦系数 cj=orol L(/2Qcjk(l2);o润滑剂动力粘度;nrol滚子自转角速度12。 图3 滚子与保持架的作用力Fig.3 The Interaction Forces Between Roller and Cage 3 圆锥滚子轴承打滑分析算例 3.1 圆锥滚子轴承动力学仿真模型

7、 选用32212型圆锥滚子轴承,其主要的结构参数,如表1所示。轴承零件密度为(7.75103)kg/m3,弹性模量为 2.061011Pa,泊松比0.28。 表1 轴承结构参数Tab.1 Structural Parameters of Bearing参数 数值 参数 数值内径/mm 60 滚子总长度/mm 19.881外径/mm 110 内滚道接触角 11.11滚子数 19 外滚道接触角 15.11滚子大端直径/mm 13.644 挡边接触角 11.82滚子端面球面半径/mm 165.15 轴承动力学仿真模型流程图,如图4所示。将用SolidWorks建立的轴承三维模型导入动力学仿真软件Re

8、curDyn,之后设置轴承各元件间约束及外载荷,至此完成轴承的几何、约束及载荷建模。 图4 轴承动力学仿真模型流程图Fig.4 The Flow Diagram of Bearings Dynamics Simulation Model 针对轴承各元件间的接触建模,利用RecurDyn的二次开发功能,根据轴承打滑理论模型中各元件间作用力理论公式,结合结构、材料、润滑以及工况等参数,运用C+编程语言编写轴承元件间作用力的接触算法,作为用户子程序供模型调用。当模型进行仿真时,软件中的辅助子程序将获取的模型状态值如位移、速度、加速度等传递给用户子程序,经用户子程序计算后将作用力值通过返回辅助子程序带

9、回模型中,供模型求解。模型每进行一步仿真,用户子程序都要执行上述过程,如此反复迭代,从而得到模型的瞬时动态特性。相对于软件自带的函数表达式,用户子程序能够表达更为复杂的函数及逻辑关系,因此运用用户子程序建立的模型更具有针对性,更能反应轴承的真实受力情况。 3.2 轴承转速对打滑的影响 轴承外圈固定,轴承内圈加载1000N轴向力,选取内圈的仿真测试转速分别为:1000r/min,1500r/min,2000r/min,4500r/min,得到不同转速下保持架角速度随时间的变化规律,如图5所示。在启动加速阶段,保持架转速迅速增加,进入稳定阶段后,保持架的角速度值随内圈转速地增加变大,且波动地幅度逐

10、渐变大。 内圈转速对保持架打滑率的影响,如图6所示。打滑率随着内圈转速地增加而变大,两者呈非线性关系。这是因为随内圈转速地增加,圆锥滚子的离心力变大,迫使其压向外滚道,从而使其与内圈接触载荷和拖动力变小,保持架从滚子获得的动力少,最终导致其转速降低、打滑率增加。图中的仿真值与文献5结果基本一致,验证了模型的准确性。 图5 不同转速下的保持架角速度Fig.5 Angular Speed of Cage Under Different Rotating Speeds 图6 内圈转速对保持架打滑率的影响Fig.6 The Effects of Rotation Speed on Cage Skidd

11、ing 3.3 轴向载荷对打滑的影响 当轴承外圈固定,内圈转速为2000r/min时,加载在内圈上的轴向测试载荷分别为:1kN,5kN,10kN,15kN,20kN。不同轴向力下保持架角速度随时间的变化规律,进入稳定阶段,保持架的角速度值随着轴向载荷地增加而变大,在固定地范围内上下波动,如图7所示。 图7 不同轴向力下保持架角速度Fig.7 The Angular Speed of Cage Under Different Axial Loads 轴向载荷对保持架打滑率的影响,如图8所示。打滑率随轴向载荷地增大而变小,且降低幅度依次减小。这是因为当轴向载荷增加时,内圈与滚子之间的接触载荷和拖动

12、力增加,在拖动力的带动下滚子和保持架组件转速增加,从而降低了保持架的打滑率,轴向载荷增加到一定程度,打滑对其敏感度下降。 图8 轴向载荷对保持架打滑率的影响Fig.8 The Effects of Axial Loads on Cage Skidding 3.4 径向载荷对打滑的影响 当内圈施加10kN的轴向载荷且转速为2000r/min,外圈施加径向测试载荷分别为:0kN,1kN,2kN,4kN,5kN。不同径向载荷下保持架角速度值随时间变化规律,如图9所示。当轴承进入稳定运转阶段后保持架的角速值随着径向载荷地增加波动幅度变小。径向载荷对保持架打滑率的影响,如图10所示。打滑率随着径向载荷地

13、增加呈现降低的趋势,且当径向载荷达到一定数值后,打滑率降低的幅度明显减小,这是由于径向载荷增加时,滚子与内圈接触地更加牢靠,两者之间的接触载荷和拖动力增加,从而提高了保持架组件转速,降低了保持架的打滑率。 图9 不同径向载荷下保持架角速度Fig.9 The Angular Speed of Cage Under Different Radial Loads 图10 径向载荷对保持架打滑率的影响Fig.10 The Effects of Radial Loads on Cage Skidding 4 结论 (1)根据基本的轴承运动学关系,推导出了适应于圆锥滚子轴承的打滑计算公式,运用RecurD

14、yn软件的二次开发功能,根据理论模型编写各零件间的C+接触力子程序,提出了一种新的轴承动力学仿真建模方法,经与已发表成果的数据对比,验证了仿真模型的准确性。 (2)由轴向、径向载荷及转速对轴承打滑影响可知:轴承打滑率随转速地增大而变大,随轴承载荷、径向载荷地增大而变小,且都呈非线性关系,故适当地增加轴向载荷或径向载荷有利于降低轴承打滑率。 参考文献 1涂文兵.滚动轴承打滑动力学模型及振动噪声特征研究D.重庆:重庆大学,2012.(Tu Wen-bing.Skidding dynamic model of rolling element bearing and featuresof vibrat

15、ion and noiseD.Chongqing:Chongqing University,2012.) 2Gupta PK.Transient ball motion and skid in ball bearingsJ.Journal of Lubrication Technology,1975,97(2):261-269. 3韩勤锴,李峥,褚福磊.基于Euler方程的角接触球轴承打滑动力学模型J.轴承,2015(7):1-7.(Han Qin-kai,Li Zheng,Chu Fu-lei.Dynamic model for slippage of angular contact bal

16、l bearings based on euler equationJ.Bearing,2015(7):1-7.) 4Harris TA.An analytical method to predict skidding in high speed roller bearingsJ.Asle Transactions,1966,9(3):229-241. 5Creju S,Bercea I,Mitu N.A dynamic analysis of tapered roller bearing under fully flooded conditionsJ.Wear,1995,188(1):1-1

17、8. 6殷锋.航空发动机高速轴承打滑检测的一种新方法探讨J.测控技术,1994(6):22-24.(Yin Feng.The discussion of a new method for detecting the sliding of air craft engine high-speed bearingJ.Measrrement&Control Technology,1994(6):22-24.) 7丁洪福,景敏卿,王风涛.加速工况下高速圆柱滚子轴承打滑分析J.机械设计与制造,2016(2):64-67.(Ding Hong-fu,Jing Min-qing,Wang Feng-Tao.S

18、kidding analysis of high speed cylindrical roller bearing considering acceleration of bearingJ.Machinery Design&Manufacture,2016(2):64-67.) 8杨海生,邓四二,李晌.航空发动机主轴高速圆柱滚子轴承保持架柔体动力学仿真J.轴承,2011(2):7-11.(Yang Hai-sheng,Deng Si-er,Li Shang.Flexible dynamic simulation on cage of aero engine high speed cylindr

19、ical roller bearingsJ.Bearing,2011(2):7-11.) 9万长森.滚动轴承的分析方法M.北京:机械工业出版社,1985:96-97.(Wan Chang-Seng.Analysis Method of Rolling BearingM.Beijing:China Machine Press,1985:96-97.) 10罗继伟.滚动轴承分析计算与应用M.北京:机械工业出版社,2009:67-69.(Luo Ji-wei,Luo Tian-yu.Analysis Calculation and Application of Roller BearingsM.Be

20、ingJing:China Machine Press,2009:67-69.) 11Deng Si-er,Teng Hong-fei,Wang Yan-shuang.Constitutive equation of a new aviation lubricating oilJ.ChineseJournal of Mechanical Engineering:English Edition,2007(5):28-31. 12Kleckner RJ,Pirvics J,Castelli V.High speed cylindrical rollingelement bearing analys

21、is“CYBEAN”analytic formulation J.Journal of Lubrication Technology,1980,102(3):380-388. Research of Skidding Characteristics of Tapered Roller Bearing Based on RecurDyn LIZhen,YAN Zhen-yong,ZHENGLin-zheng,LIDuo(School of Mechanical Engineering,Dalian University of Technology,Liaoning Dalian 116024,C

22、hina) Abstract:The skidding of bearing has always been an important factor that leads to the premature failure.In order to study the skidding phenomenon of the tapered roller bearing,the kinematic relations and interaction forces between bearing components are analyzed.The subroutines of interaction

23、 forces between bearing components are wrote.The bearings dynamics simulation model is developed by using RecurDyn software.The effects of rotation speed,axial load on bearing skidding are discussed.The results show that the skidding rates become larger with increase of rotation speed,decrease with

24、increase of axial load,radial load.Increasing the value of axial load or radial load properly can help reduce the skidding rates. Key Words:Tapered Roller Bearing;Skidding;Rotation Speed;Axial Load;Radial Load 中图分类号:TH16;TH117;TH122 文献标识码:A 文章编号:1001-3997(2017)12-0130-04 来稿日期:2017-06-12 基金项目:辽宁省科技创新重大专项项目“大轴重铁路货车滚动轴承”(2015106009) 作者简介:李 震,(1975-),男,辽宁辽阳人,博士研究生,讲师,主要研究方向:轴承设计;闫振勇,(1989-),男,山东潍坊人,硕士研究生,主要研究方向:轴承动力学仿真

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1