ImageVerifierCode 换一换
格式:DOCX , 页数:26 ,大小:21.01KB ,
资源ID:18659849      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/18659849.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(不等式计算专项练习及答案Word格式文档下载.docx)为本站会员(b****6)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

不等式计算专项练习及答案Word格式文档下载.docx

1、23解不等式组:;在数轴上表示出不等式组的解集,并写出它的整数解24解不等式组:25解不等式组26解不等式组)27当x是不等式组的正整数解时,求多项式(13x)(1+3x)+(1+3x)2+(x2)3x4的值28解方程与不等式组:解方程:解不等式组:29解不等式组30解不等式组,并写出不等式组的整数解.31(1)解不等式组:(2)解方程:32解不等式组:33解不等式组,并在数轴上表示它的解集 34(1)解方程:; ,并把解集在数轴上表示出来35解不等式组36解不等式(组)(1) 37解不等式组:38已知不等式组的解集为6x3,求m,n的值39解不等式组并把解集在数轴上表示出来;并写出其整数解。

2、40计算:分解因式:解不等式组41解不等式组,并写出它的所有整数解.42解不等式组:并将解集在数轴上表示.43(1)解二元一次方程组:(2)解不等式组:并把它的解集在数轴上表示出来。44解不等式组45解方程组或不等式组:(1)解方程组 46解不等式组,并把它的解集表示在数轴上参考答案1-2x3【解析】【分析】先分别求出每一个不等式的解集,然后将每一个不等式的解集用数轴表示出来即可得答案.【详解】由3(x-1)122x,得x3,由4(x+1)3(x+1),得x,由 ,得x4,所以不等式组的解集为x所以整数解为3.本题考查了一元一次不等式组的整数解,正确求出一元一次不等式组的解集是解题的关键.3(

3、1)x1;(2)x2;(3)2x2;(4)x(1)按去分母、去括号、移项、合并同类项、系数化为1的步骤进行求解即可得;(2)写成常见不等式组的形式,然后分别求出每一个不等式的解集,再根据不等式组的解集的确定方法即可得;(3)分别求出每一个不等式的解集,然后再确定不等式组的解集即可;(4)分别求出不等式组中每一个不等式的解集,然后再根据不等式组解集的确定规律进行确定即可求得解集.(1)6x-3(x-1)12-2(x+2),6x-3x+312-2x-4,6x-3x+2x12-4-3,5x-2,所以不等式组的解集是:2x2;(4),16,x,x.本题考查了解一元一次不等式(组),熟练掌握解一元一次不

4、等式(组)的求解方法以及注意事项是解题的关键.4(1)x- (2)x0(1)先根据y1y2列出关于x的不等式,求出x的值即可;(2)先根据2y1-y24列出关于x的不等式,求出x的值即可解:(1)y1=x+3,y2=-x+2,x+3-x+2,解得x-;(2)y1=x+3,y2=-x+2,2y1-y24,2(x+3)-(-x+2)4,解得x0本题考查的是一次函数与一元一次不等式,根据题意列出关于x的不等式是解答此题的关键5.先求出两个不等式的解集,再求其公共解由 得-2x-8解得 由 得9x24,所以,原不等式组的解集是本题考查的是一元一次方程组,熟练掌握一元一次方程组是解题的关键.6x分别求出

5、不等式,的解集,即可得出结论由得,x1,由得,x,原不等式组的解集为x此题主要考查了解一元一次不等式组,掌握解一元一次不等式组的方法是解本题的关键7(1)-;(2)-2x2(1)先根据负指数幂,绝对值的意义,零指数幂的意义化简,然后再计算;(2)先求出组中每个不等式的解,再确定不等式组的解集(1)原式3131;解得:x2,解得:x2,不等式组的解集为2x2本题考查了实数的运算以及一元一次不等式组的解法,解决本题的关键是掌握零指数、负整数指数幂的意义及不等式组的解法8-1,0,1,2.分别求出各不等式的解集,再求出其公共解集在公共解集内找出符合条件的x的所有非负整数解即可由得,x-2,由得,x

6、故此不等式的解集为:-2x,所有整数解为:-1,0,1,2,本题考查解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解题关键9整数解为:2,1,0先分别求出每一个不等式的解集,然后确定出不等式组的解集,再确定整数解即可.由得,x2,由得,x1,2x1,其整数解为:本题考查了解一元一次不等式组及不等式组的整数解,熟知解集的确定方法“大大取大,小小取小,大小小大中间找,大大小小无解了”是解题的关键.10见解析先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.解不等式得解不等式得 不等式组的解集为.本题考查了解一元一次不等式(组),不等式

7、组的整数解,在数轴上表示不等式组的解集的应用,解题的关键是求出不等式组的解集11;分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集解不等式,得:.解不等式,得:.则不等式组的解集为.不等式组的整数解为:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;大大小小找不到”的原则是解答此题的关键12(1)x1;(2)1x1(1)根据解分式方程的步骤解方程即可,注意检验.(2)可先根据一元一次不等式的解法分别解不等式,找出解集的公共部分即可.(1)(x+1)(x-2)+x=x(x+2)x1;检验:x=1是原方程的实

8、数根(2)解得x1,x1,原不等式组的解集是1x1.考查分式方程的解法以及解一元一次不等式组,掌握它们的解题步骤是解题的关键.131,2.先求得不等式组x的取值范围,然后取其整数解即可.解不等式1x0,得x1,不等式组的解集为1x3,则不等式组的整数解为:1,2.本题主要考查不等式组的整数解,解此题的关键在于准确求解不等式组得到x的取值范围.14(1)-1x9,见解析;(2)-4x5(1)求出两个不等式的解集的公共部分,并把解集在数轴上表示出来即可;(2)求出两个不等式的解集的公共部分即可(1),解不等式得x-1,解不等式得x9,故不等式的解集为-1x9,把解集在数轴上表示出来为:解不等式得x

9、5,解不等式得x-4,故不等式的解集为-4x5考查了在数轴上表示不等式的解集,用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”150、1、2、3、4、5同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,再取其非负整数解即可.解不等式2x+13x+3,得:x-2,解不等式,得:x5,则不等式组的解集为-2x5,所以不等式组的非负整数解为0、1、2、3、4、5考查的是解一元一次不等式组,正确求出每一个不等式解

10、集是基础,熟知“同大取大;16(1)x-3(2)-(1)先移项,再合并同类项、系数化为1即可;(2)先求两个不等式的解集,再求公共部分即可(1)移项得,2x-3x2+1,合并同类项得,-x3,系数化为1得,x-3在数轴上表示出来:(2) ,解得,x1,解得,x不等式组的解集为x1.考查了不等式与不等式组的解法,是基础知识要熟练掌握17(1)-1x4;(2)5.(1)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集;(2)根据绝对值的性质去绝对值符号,再合并即可得(1)解不等式3x+30,得:x-1,解不等式2(x+5)6(x-1),得:

11、x4,则不等式组的解集为-1x4;(2)原式=x+1-(x-4)=x+1-x+4 =518(1)-4a;(2)-5a+1.(1)将a看做常数解关于x、y的方程,依据方程组的解为正数得出关于a的不等式组,解之可得;(2)根据绝对值的性质去绝对值符号,合并同类项可得+,得:x=-4a+5,-,得:y=a+4,方程的解为正数,解得:-4a;(2)由(1)知-4a+50且a+40,原式=-4a+5-a-4=-5a+1本题主要考查解二元一次方程组和一元一次不等式组及绝对值的性质,根据题意列出关于a的不等式组是解题的关键19(1)x3;(2)-1,0,1.(1)去分母,去括号,移项,合并同类项,系数化成1

12、即可;(2)先求出不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可(1)去分母得:20-5(x-7)2(4x+3)+10,20-5x+358x+6+10,-5x-8x16-35-20,-13x-39,x3,在数轴上表示为:解不等式得:x,不等式组的解集为-2x,此不等式组的整数解有:-1,0,1.本题考查了解一元一次不等式(组),在数轴上表示不等式(组)的解集等知识点,能求出不等式或不等式组的解集是解此题的关键201x3先求出不等式的解集,再根据不等式的解集求出不等式组的解集即可x1,不等式组的解集为1x3本题考查了解一元一次不等式组,能根据不等式的解集找出不等式组的解集是解此题的

13、关键21解不等式,得,所以,不等式组的解集为本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到无解22,0,1,见解析.分别解两个不等式,根据大小小大取中间得到不等式的解集,然后利用数轴表示,再写出整数解则不等式组的解集为,将不等式组的解集表示在数轴上如下:则不等式组的整数解有,0,1本题考查了解一元一次不等式组:先分别解两个不等式,然后根据“同大取大,同小取小,大小小大取中间,大大小小无解集”确定不等式组的解集也考查了数轴表示不等式的解集230,1,2,3先求出两个不等式的解集,再求其公共解,然后写出整数

14、解将不等式解集表示在数轴上如下:所以不等式组的解集为,则不等式组的整数解有0,1,2,3考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解求不等式组解集的口诀:24由得:本题主要考查一元一次不等式组解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:25-1x4分别求出不等式组中两不等式的解集,表示在数轴上找出解集的公共部分确定出不等式组的解集即可解不等式2(x+2)3x,得:解不等式-2,得:x-1,将两不等式的解集表示在数轴上如下:所以不等式组的解集为-1x4此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键26(1);(2)先去括号,再移项,最后合并,从而得出不

15、等式的解集;先解两个不等式,再求公共部分即可去括号,得,移项,得,合并同类项得,; (2)解得,解得,不等式组的解集考查了解一元一次不等式组,解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了277求出不等式组的解集,找出解集中的正整数解确定出x的值,原式利用平方差公式,完全平方公式,以及幂的乘方及单项式除以单项式法则计算得到最简结果,把x的值代入计算即可求出值由得:x2,由得:x,不等式组的解集为x2,正整数x的值为1,则原式19x2+1+6x+9x2x6x419x2+1+6x+9x2x2=x2+6x+21+6+27此题考查了整式的混合运算-化简求值,以及一元一次

16、不等式组的整数解,熟练掌握运算法则是解本题的关键28(1)x1;(2)8x2(1)将分式方程转化为整式方程,解整式方程求出x的值,再检验即可得;(2)分别求出每个不等式的解集,再确定各解集的公共部分即可得答案(1)两边同时乘以3x,得3(x3)28x,x1,当x1时,3x30,分式方程的解为x1;(2)解不等式3x4x,得:解不等式x+3x1,得:x8,则不等式组的解集为8x2本题考查了分式方程的解法和步骤及一元一次不等式组的解法和过程在解答中注意分式方程要验根,不等式组的解集在表示的时候有无解集要分清楚292x5先分别求出不等式组中每一个不等式的解集,然后再确定出各解集的公共部分即可.由得,

17、x由得,原不等式组的解集为2x本题考查了解一元一次不等式组,熟知解集的确定方法“同大取大,同小取小,大小小大中间找,大大小小无解了”是解题的关键.30不等式组的解集是;不等式组的整数解是.先求出两个不等式的解集,再求不等式组的解集,写出其整数解即可.不等式组的解集是 不等式组的整数解是.考查解一元一次不等式组,一元一次不等式组的整数解,熟练掌握解一元一次不等式是解题的关键.31(1)-5x2;(2)x=1(1)先分别求出不等式组中每个不等式的解集,然后再确定各解集的公式部分即可;(2)两边同时乘以(x-2),化为整式方程,解整式方程后进行检验即可得.-5,-5x2;(2)方程两边同时乘以(x-

18、2),得x-3+x-2=-3,x=1,当x=1时,x-20,所以原方程的解为:x=1.本题考查了解一元一次不等式组,解分式方程,熟练掌握各自的解法以及注意事项是解题的关键.32时,不等式组的解集为;时,不等式组无解分别解两个不等式得到和,根据不等式组的解集的确定方法讨论:当,不等式组的解集为;当,不等式组无解解(1)得,解得,当,即时,不等式组的解集为;当,即时,不等式组无解解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集解集的规律:同大取大;大大小小找不到331x3根据不等式的性质求出每个不等式的解集,根据赵不等式组解集的规律

19、找出不等式组的解集即可x1, 解得:不等式组的解集为:1x3在数轴上表示不等式组的解集为:故答案为:1x3.求解出两个不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集34(1)x=-;(2) x,见解析(2)先求出每个不等式的解集,再求出不等式组的解集即可5(1x)202(x+2),55x202x4,5x+2x2045,3x11,x;(2) x2,不等式组的解集是x,本题考查了解一元一次不等式组、在数轴上表示不等式组的解集、解一元一次方程等知识点,能正确根据等式的性质进行变形是解(1)的关键,能根据不等式的解集找出不等式组的解集是解(

20、2)的关键35不等式组的解集是本题主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)36(1)1x2;(2)x31)求出每个不等式的解集,根据找不等式组解集的规律确定解集即可(2)求出每个不等式的解集,根据找不等式组解集的规律确定解集即可(1) ,x1,x2,1x2;x2,x3, x3本题考查了不等式的性质,解一元一次不等式组,关键是能根据不等式的解集找出不等式组的解集解集的规律:37解不等式得, 解不等式得,,所以,不等式组的解集是.考查解一元一次不等式组,比较容易,分别解不等式,找出解集的公共部分即可.38m1,n1分别求出每个不等式的解集,根据该不等式组的解集为-63可得关于m、n的方程,解得m、n的值.不等式组整理得:,即3m3x2n+1,由不等式组的解集为6x3,可得3m36,2n+13,m1,n1考查一元一次不等式组的解法,熟练掌握

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1