ImageVerifierCode 换一换
格式:DOCX , 页数:12 ,大小:193.79KB ,
资源ID:18573112      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/18573112.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(精双曲线中常见结论Word文档格式.docx)为本站会员(b****6)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

精双曲线中常见结论Word文档格式.docx

1、有相同的渐近线和相同的离心率。9、P为双曲线上一点,则的面积为S=设PF1=m,PF2=n。则m-n=2a m2+n2-2mncos=4c2mn=,S=10、F1,F2是双曲线的两个焦点,P为双曲线上任一点,PF1F2= ,PF1F2=。则双曲线的离心率为e=例(湖南卷)已知双曲线1(a0,b0)的右焦点为F,右准线与一条渐近线交于点A,OAF的面积为(O为原点),则两条渐近线的夹角为 (D )A30 B45 C60 D90例双曲线的离心率为2,则的值为( )A3 B C3或 D以上都不对椭圆的几何性质 一、教学目标(一)知识教学点通过椭圆标准方程的讨论,使学生掌握椭圆的几何性质,能正确地画出

2、椭圆的图形,并了解椭圆的一些实际应用(二)能力训练点通过对椭圆的几何性质的教学,培养学生分析问题和解决实际问题的能力(三)学科渗透点使学生掌握利用方程研究曲线性质的基本方法,加深对直角坐标系中曲线与方程的关系概念的理解,这样才能解决随之而来的一些问题,如弦、最值问题等二、教材分析1重点:椭圆的几何性质及初步运用(解决办法:引导学生利用方程研究曲线的性质,最后进行归纳小结)2难点:椭圆离心率的概念的理解先介绍椭圆离心率的定义,再分析离心率的大小对椭圆形状的影响,最后通过椭圆的第二定义讲清离心率e的几何意义)3疑点:椭圆的几何性质是椭圆自身所具有的性质,与坐标系选择无关,即不随坐标系的改变而改变利

3、用方程分析椭圆性质之前就先给学生说明)三、活动设计提问、讲解、阅读后重点讲解、再讲解、演板、讲解后归纳、小结四、教学过程(一)复习提问1椭圆的定义是什么?2椭圆的标准方程是什么?学生口述,教师板书(二)几何性质根据曲线的方程研究曲线的几何性质,并正确地画出它的图形,是b0)来研究椭圆的几何性质说明:椭圆自身固有几何量所具有的性质是与坐标系选择无关,即不随坐标系的改变而改变1范围即|x|a,|y|b,这说明椭圆在直线x=a和直线y=b所围成的矩形里(图2-18)注意结合图形讲解,并指出描点画图时,就不能取范围以外的点2对称性先请大家阅读课本椭圆的几何性质2设问:为什么“把x换成-x,或把y换成-

4、y?,或把x、y同时换成-x、-y时,方程都不变,所以图形关于y轴、x轴或原点对称的” 呢?事实上,在曲线的方程里,如果把x换成-x而方程不变,那么当点P(x,y)在曲线上时,点P关于y轴的对称点Q(-x,y)也在曲线上,所以曲线关于y轴对称类似可以证明其他两个命题同时向学生指出:如果曲线具有关于y轴对称、关于x轴对称和关于原点对称中的任意两种,那么它一定具有另一种对称如:如果曲线关于x轴和原点对称,那么它一定关于y轴对称事实上,设P(x,y)在曲线上,因为曲线关于x轴对称,所以点P1(x,-y)必在曲线上又因为曲线关于原点对称,所以P1关于原点对称点P2(-x,y)必在曲线上因P(x,y)、

5、P2(-x,y)都在曲线上,所以曲线关于y轴对称最后指出:x轴、y轴是椭圆的对称轴,原点是椭圆的对称中心即椭圆中心3顶点只须令x=0,得y=b,点B1(0,-b)、B2(0,b)是椭圆和y轴的两个交点;令y=0,得x=a,点A1(-a,0)、A2(a,0)是椭圆和x轴的两个交点强调指出:椭圆有四个顶点A1(-a,0)、A2(a,0)、B1(0,-b)、B2(0,b)教师还需指出:(1)线段A1A2、线段B1B2分别叫椭圆的长轴和短轴,它们的长分别等于2a和2b;(2)a、b的几何意义:a是长半轴的长,b是短半轴的长;这时,教师可以小结以下:由椭圆的范围、对称性和顶点,再进行描点画图,只须描出较

6、少的点,就可以得到较正确的图形4离心率教师直接给出椭圆的离心率的定义:等到介绍椭圆的第二定义时,再讲清离心率e的几何意义先分析椭圆的离心率e的取值范围:ac0, 0e1再结合图形分析离心率的大小对椭圆形状的影响:(2)当e接近0时,c越接近0,从而b越接近a,因此椭圆接近圆;(3)当e=0时,c=0,a=b两焦点重合,椭圆的标准方程成为x2+y2=a2,图形就是圆了(三)应用为了加深对椭圆的几何性质的认识,掌握用描点法画图的基本方法,给出如下例1例1 求椭圆16x2+25y2=400的长轴和短轴的长、离心率、焦点和顶点的坐标,并用描点法画出它的图形本例前一部分请一个同学板演,教师予以订正,估计

7、不难完成后一部分由教师讲解,以引起学生重视,步骤是:(2)描点作图先描点画出椭圆在第一象限内的图形,再利用椭圆的对称性就可以画出整个椭圆(图2-19)要强调:利用对称性可以使计算量大大减少本例实质上是椭圆的第二定义,是为以后讲解抛物线和圆锥曲线的统一定义做准备的,同时再一次使学生熟悉求曲线方程的一般步骤,因此,要详细讲解:设d是点M到直线l的距离,根据题意,所求轨迹就是集合P=M将上式化简,得:(a2-c2)x2+a2y2=a2(a2-c2)这是椭圆的标准方程,所以点M的轨迹是椭圆由此例不难归纳出椭圆的第二定义(四)椭圆的第二定义1定义平面内点M与一个定点的距离和它到一定直线的距离的比是常数线

8、叫做椭圆的准线,常数e是椭圆的离心率2说明这时还要讲清e的几何意义是:椭圆上一点到焦点的距离和它到准线的距离的比(五)小结解法研究图形的性质是通过对方程的讨论进行的,同一曲线由于坐标系选取不同,方程的形式也不同,但是最后得出的性质是一样的,即与坐标系的选取无关前面我们着重分析了第一个标准方程的椭圆的性质,类似可以理解第二个标准方程的椭圆的性质布置学生最后小结下列表格:五、布置作业1求下列椭圆的长轴和短轴的长、焦距、离心率、各个顶点和焦点坐标、准线方程:(1)25x2+4y2-100=0,(2)x2+4y2-1=02我国发射的科学实验人造地球卫星的运行轨道是以地球的中心为一个焦点的椭圆,近地点距

9、地面266Km,远地点距地面1826Km,求这颗卫星的轨道方程3点P与一定点F(2,0)的距离和它到一定直线x=8的距离的比是12,求点P的轨迹方程,并说明轨迹是什么图形的方程作业答案:4顶点(0,2)可能是长轴的端点,也可能是短轴的一个端点,故分两种情况求方程:六、板书设计初夏早上六点,清亮透明的月儿还躲藏在云朵里,不忍离去,校园内行人稀少,我骑着单车,晃晃悠悠的耷拉着星松的睡眼。校园内景色如常,照样是绿意盈盈,枝繁叶茂,鸟儿歌唱。经过西区公园,看那碧绿的草地,飞翔中的亭子,便想起十七那年,在这里寻找春天的日子。本想就此停车再感受一遍,可惜心中记挂北区的荷塘。回想起冬日清理完荷塘的枯枝败叶,一片萧条的景色:湖水变成墨绿色,没有鱼儿游动,四处不见了鸟儿的踪影,只有莲藕躺在湖底沉沉睡去。清洁大叔撑着竹竿,乘一叶扁舟,把一片片黑色腐烂的枯叶残枝挑上船。几个小孩用长长的铁钩把莲蓬勾上岸,取下里头成熟的莲子。欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1