1、470.0624.980.0111161QLT中铁素体含量24.14%,马氏体68.55%,马氏体中碳含量54.81%(即0.02439%)RLT、QLT和QT热处理工艺下马氏体中的位错密度分别为1.96108 /cm2、1.85108 /cm2、2.40108 /cm2。M:k2-98.1 k2L-1.55*10-6m F:k2-3.33 k2L-10-5m为位错的线张力;J为实验钢的弹性模量;b为伯氏矢量;马氏体的位错平均自由长度为3.810-8m1717 C. Thomser, U. Prahl, H. Vegter, W. Bleck, Comput. Methods Mater. S
2、ci. 7 (1)(2007) 4246.逆转奥氏体中碳含量的计算公式为8为奥氏体中的碳含量,为通过衍射峰测定的晶格常数8Koh-ichi Sugimoto, Tsutomu Iida, Jyunya Sakaguchi, et al. Retained Austenite Characteristics and Tensile Properties in a TRIP Type Bainitic Sheet Steel J. ISIJ International, 2000, 9(40): 902.(TEM)首先将试样线切至0.2mm的薄片,采用人工用砂纸均匀磨薄至40m,然后将薄膜样品冲成
3、若干3mm的小圆片,小圆片经过10%的高氯酸和90%的乙醇溶液电解双喷减薄至穿孔(电压约12V、电流约40mA、时间约12s、液氮环境)后,然后用Philips TecNai12型透射电镜对逆转奥氏体的形态、分布及其他组织形貌进行观察和衍射标定。描述双相钢变形特性的模型对于给定碳含量的钢,当进行临界区处理时,临界区处理温度与马氏体的体积分数及马氏体中的碳含量有很大关系。而马氏体的碳含量可以根据钢中碳含量和质量平衡定律以及相应的马氏体体积分数计算,即,如果忽略铁素体相中的碳含量,则,式中C0钢中初始碳含量,Cr为临界区加热时奥氏体中的碳含量。假定它等于随后淬火成马氏体时的碳含量,则1-1在双相钢
4、中,马氏体一般呈均匀分布及不连续的特点与不连续纤维复合材料接近,基于不连续纤维复合物的强化模型,导出了双相钢混 合物定律表达式2,3。同一钢种不同临界区温度处理后,得出11-2 根据铁素体的强度与马氏体体积分数关系2,9,假定1-3K1,K2为回归常数;,碳含量趋于零时马氏体的强度,它受钢中或马氏体中合金元素的影响;,马氏体体积分数为零时钢的强度,它受铁素体的晶粒大小、固溶强化元素等因素的影响;Cm,马氏体中碳含量,假定它等于临界区加热时奥氏体中的碳含量将式1-2和式1-3代入式1-1,得到根据文献2,3的实验结果: =482,K1=634,K2=2970, =788将其代入上式得(抗拉强度模
5、型)沈显璞和雷廷权46在一种新的双相钢强度表达式提出双相钢的马氏体分布与特性更适合于短纤维复合材料,在这种假设的前提下他利用短纤维复合材料剪切滞后分析法,在(1-1)式的基础上建立了一种双相钢强度表达式:马氏体抗拉强度,铁素体抗拉强度,为马氏体体积分数,为铁素体体积分数,K为马氏体与铁素体抗拉强度比,为马氏体岛长度与直径比多相材料的塑性变形一般可分为三个阶段:软硬相都发生弹性变形;软相发生塑性变形,硬相保持弹性变形;软硬相都保持塑性变形。应力应变曲线模型:在双相钢中马氏体和铁素体相的变形特性取决于很多因素,包括热处理过程中化学元素的分布、微观结构属性(如铁素体晶粒尺寸、马氏体亚结构等)以及这些
6、组织的位错密度。先前工作中,一些研究者运用经验公式来模拟双相钢在拉伸过程中的变形行为30-33。特别地,铁素体和马氏体流变应力行为表达式为30-33:(1)上面公式中,是塑性应变为时的流变应力;为合金元素影响下铁素体或马氏体的流变应力;为碳的固溶强化或析出强化。其中、可以根据铁素体和马氏体中的化学成分,结合文献31、33中的经验公式计算得到。运用文献31中的公式计算得到铁素体和马氏体两者的为558.3MPa。假定铁素体中的碳含量为0.02%,也就是铁素体中最大固溶碳含量。马氏体中的碳含量可以根据马氏体的体积分数以及钢中的碳含量得到。马氏体和铁素体的分别为100MPa。公式(1)中的第三项是由位
7、错和微观结构引起的强化。它是与应变相关的位错密度,与一般的位错强化公式不同。公式1中的是常数,为0.33;b为伯格斯矢量,M是泰勒常数,是剪切模量,其值分别为3.80GPa和2.510-10m。58K. J .KIM. L. H. SCHWARTZ. On the Effect of intercritical Tempering on the impact Energy of Fe-9Ni-0.1C, Materials Science and Engineering, 1978, 33:5-20.61ZHANG Fu-tian, WANG Jing-yun, GUO Yun-yi. On
8、the relationship between return austenite and toughness for Ni9 steel at cryogenic temperaturesJ. Acta Metallurgica Sinica, 1984, 20(6): A405-A410.62YANG Yue-hui, WU Hui-bin, CAI Qing-wu, et al. Formation of reversed austenite and its stability in 9Ni steel during temperingJ. Transactions of Materia
9、ls and Heat Treatment, 2010, 31(3):73-77.70刘彦明, 石凯, 周勇等. 9Ni钢的热处理及低温韧度J. 热加工工艺. 2007, 36 (16):77-83.71雷鸣,郭蕴宜9%Ni 中沉淀奥氏体的形成过程及其在深冷下的表现J 金属学报,1989,25(1) : A13-A1772杨跃辉,蔡庆伍,武会宾,等两相区热处理过程中残余奥氏体的形成规律及其对9Ni钢低温韧性的影响J 金属学报,2009,45(3) : 270-27473Wert C, Marx J. Acta Metallurgica Sinica, 1953; 1: 11374 Bagram
10、ov R, Mari D, Benoit W.Internal friction in a martensitic high-carbon steelJ. Philosophical Magazine A, 2001, 81(12): 2797.75Szkopoak Z C, Eliaz W J. Snoek peaks and their stability in annealed and deformed TantalumJ. Less-Common Metals,1966,11,273.76 I. Tkalcec, D. Mari. Internal friction in marten
11、sitic, ferritic and bainitic carbon steel; cold work effects, Materials Science and Engineering A 2004 (370) 213217.77 C. Thomser, U. Prahl, H. Vegter, W. Bleck, Comput. Methods Materials Science 7 (1)(2007) 4246.78 A. Ramazani, K. Mukherjee, U. Prahl, W. Bleck, Computational Materials Science52(201
12、2) 4654. 30 George K. Martensite in steel: strength and structure J. Materials Science and Engineering: A, 1999, 273-275: 40-57.31 Roberts M J. Effect of transformation substructure on the strength and toughness of Fe-Mn alloysJ. Metallurgical Transactions, 1970, 1(12): 3287-3294.32 Tomita Y, Okabay
13、ashi, K. Effect of microstructure on strength and toughness of heat-treated low alloy structural steelsJ. Metallurgical Transactions A, 1986, 17(7): 1203-1209.33 Shibata A,Nagoshi T, Sone M, et al. Evaluation of the block boundary strengths of ferrous lath martensite using a miro-bending testJ. Mate
14、rial Science and Engineering A, 2010, 527(29-30); 7538-7544.16R.M.Rodriguez, I. Gutierrez, Materials Science Forum 426-432(2003)4525-45301 邱正华, 张桂红, 吴忠宪. 低温钢及其应用J. 材料与焊接, 2004, 25(2): 43-46.2 张勇. 低温压力容器用钢的现状与发展概况J. 压力容器, 2006, 23(4): 31-34.3 EN 10028-4: 2009. Steel flat products for pressure purpose
15、s: Nickel-alloy steelswith specified low temperature propertiesS. European Norm, 2009. 4 GB 24510-2009. 低温压力容器用9%Ni钢板S. 中国国家标准化委员会, 2009. 5 ASTM A553/A553M-2006. Standard Specification for Pressure Vessel Plates, Alloy Steel, Quenched and Tempered 8 and 9% NickelS. American Standard, 2006.6 JIS G312
16、7- 2005. Nickel steel plates for pressure vessels for low temperature serviceS. Japanese Industrial Standard, 2005.7 R. Horii, Meng, and N. Mizuhashi. Developments in welding 9% nickel steelJ. Welding Low Temperature Containment Plant, 1973(11): 16-26.8 R. A. Daemin and Ingtechn. Recent development
17、in the field of electrodes for welding cryogenic 9 %Ni steelJ. Welding Low Temperature Containment Plant, 1973(11): 10-15.9 Naoki Saitoh, Ryouta Yamaba, Hirohide Muraoka, et al. Development of Heavy 9% Nickel Steel Plates with Superior Low-Temperature Toughness for LNGStorage TanksJ. Nippon Steel Te
18、chnical Report, 1993, 58(7): 9-16.10 刘祥儒. 9Ni钢低温储罐焊接施工经验与工艺问题探讨J. 石油工程建设, 1997(5): 14-18.11 梅晔. 9Ni钢10000m3乙烯低温储罐焊接技术J. 化工建设工程, 2002, 24(5): 10-13.12 宋立群. 9Ni钢乙烯低温储罐的焊接. 江苏机械制造与自动化, 1997, 19(3):21-23.13 熊光德, 毛云龙. LNG储存和运输J. 天然气和石油, 2005, 23(2): 17-20.14 Bureau Veritas. Globle QHSE solutions for LNG
19、industry S, Second Asia LNGsummit, 2007.15 ZHAO Xi-qing , PAN Tao, WANG Qing-feng, et al. Effect of Tempering Temperature on microstructure and mechanical properties of steel containing Ni of 9 %J. Journal of iron and steel research, International. 2011, 18(5): 47-58.16 Leem D S, Lee Y D, Jun J H. A
20、mount of retained austenite at room temperatureafter reverse transformation of martensite to austenite in an Fe-13%Cr-7%Ni-3%Si martensitic stainless steelJ. Scripta Materialia, 2001, 45(7): 767-772.17 C.C. Kinney, K.R. Pytlewski, et al. The microstructure of lath martensite in quenched 9Ni steelJ.
21、Acta Materialia 2014, 69: 372-385.18 Morito S, Saito H , Ogawa T, et al. Effect of austenite grain size on themorphology and crystallography of lath martensite in low carbon steelsJ. Journal of the Iron and Steel Institute of Japan International, 2005, 45(1): 91-94.19 王春芳, 董瀚等. 17CrNiMo6 钢中板条马氏体的形态与
22、晶体学分析J. 材 料热处理学报. 2007, 28(2): 64-68.20 Luo Z J, Shen J C, Su H, et al. Effect of substructure on toughness of lathmartensite/bainite mixed structure in low-carbon steelsJ. Journal of Iron andSteel Research (International), 2010, 17(11): 40-48.21 胡湘红. 9Ni钢固态相变规律探讨J. 宽厚板, 2007, 13(5): 33-39.22 Wilson
23、 E A, Chong S H. Isothermal transformations in an Fe-9 pet Ni alloyJ.Metallurgical and Materials Transactions A, 2002, 33(8): 2425-2431.23 严春妍, 李午申, 薛振奎等. LNG储罐用9Ni钢及其焊接性J. 焊接学报. 2008, 29(3): 49-52.24 姚圣杰, 杜林秀, 刘相华等. 循环加热-淬火工艺下超细晶奥氏体的晶粒演 变特征J. 材料热处理学报. 2009, 30(5): 50-54.25 Morito S, Yoshida H, Maki
24、 T, et al. Effect of block size on the strength of lathmartensite in low carbon steels J. Materials Science and Engineering: A, 2006, 438- 440: 237-240.29 葛庭燧. 固体内耗的概况和新近发展J. 物理, 1988(11) .30 A. C. Nowick and B. S Berry. An elastic relaxation in crystalline solidsM. NewYork: Academic press, 1972.31
25、Koiwa M. A note on Dr. J. L. SnoekJ. Materials Science and Engineering A, 2004, 370: 9-11. 32 Koiwa M, Numakura H. The Snoek effect in ternary BCC alloys: A reviewJ, Solid State Phenomena, 2006, 115: 37-40. 33 Weller M. The Snoek relaxation in bcc metalsFrom steel wire to meteoritesJ, Materials Scie
26、nce and Engineering A, 2006, 442: 21-30. 34 Pascheto W, Johari G P. Annealing and aging of interstitial C in-Fe, as measured by internal frictionJ, Metallurgical and Materials Transactions A, 1996, 27: 2461-2469. 35 Mosher D, Diercks D W C. Precipitation of carbon from solid solution in vanadiumJ, M
27、etallurgical and Materials Transactions B, 1972, 3: 3077-3080.36 Ogi H, Ledbetter H, Kim S. Snoek relaxation in a copper-precipitated alloy steelJ, Journal of Alloys and Compounds, 2000, 310: 432-435. 37 戢景文, 刘芬娣, 王登京, 等. 汽车钢烘烤硬化性机理的内耗研究J, 金属学报, 1999, 35: 913-919. 38 戢景文, 于宁. 冶金内耗相关的阻尼峰机理J, 物理学进展, 2
28、006, 26(3): 297-308.39 Tkalcec I, Mari D, Benoit W. Correlation between internal friction background and the concentration of carbon in solid solution in a martensitic steelJ, 471-475. 40 Hoyos J, Ghilarducci A, Salva H R, et al. Internal friction in martensitic carbon steelsJ, Materials Science and
29、 Engineering A, 2009, 521-522: 347-350. 50 Jagodzinski Y, Tarasenko A, Smuk S, et al. Internal friction study of hydrogen behavior in low activated martensitic F82H steelJ, Joural of Nuclear Materials.1999, 275: 47-55. 51 肖金泉. 金属内耗在评价深冲薄板质量中的应用J, 物理测试, 1987, 4: 4-5. 52 Ayer R,Mueller R R,Neeraj T. E
30、lectron backscattered diffraction study of cleavage fracture in pure iron. Materials Science and Engineering A, 2006, 417(1-2):243.53 金属热处理编辑部. 金属材料的冲击吸收能量. 金属热处理. 2012, 37(1): 48-49.54 朱林茂, 刘卫平, GB/T 229-2007-金属材料: 夏比摆锤冲击试验方法. 北京.中国标准出版社. 2007.55 K. W. Andrews. Empirical Formulate for the Calculation of Some Transformation Temperatures J, Iron Steel Inst, 1965, 203 (6
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1