ImageVerifierCode 换一换
格式:DOCX , 页数:10 ,大小:44.72KB ,
资源ID:18486630      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/18486630.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(整体数学教学Word文件下载.docx)为本站会员(b****4)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

整体数学教学Word文件下载.docx

1、4凸现数学学习的本质,注重思想方法的领悟数学学习中经常体现化归的数学思想,学生已有一定的领悟。从某种意义上讲,数学就是一门化归的科学,数学学习的本质就是化归。在“相似三角形判定定理”的学习过程学生将看到三条判定定理的得出都是通过将其化归为预备定理得以实现的,这将势必感受到数学学习的本质是化归。化归的思想不仅是数学的学科思想,而且是人们认识世界、分析问题、解决问题不可或缺的思想方法。同时,在具体构建新知识时,又用了类比推理的数学思想,这些数学思想的领悟是数学学习的主题目标之一。5创设问题情境,使问题情境化、过程化、延伸化。激起学生学习数学的内驱力的一种很有效的方法,就是创设问题情境,使学生引起认

2、知冲突或置身于渴望求得新知解决问题的情境中,这时的学习是最为有效的。为此,我们设计了“网格中的两个三角形是否相似”的问题情境,学生用定义或预备定理难解决,激起新的判定方法的学习欲望。当学了三条判定定理后,就较容易地解决了问题,使他们体会到一种学习成功的愉悦。符号表示类比(部分学生存有的“?”)顺应(放到课的最后)已有知识全等三角形探究新知相似三角形全等三角形判定 (固着点2)定理SASASAAASSSS(固着点1) 预备定义相似三角形判定定理?AB/A1B1= AC/A1C1,AB/A1B1BC/B1C1CA/C1A1全等三角形的概念及定义相似三角型的概念及定义最基本的性质(由定义给出)今天学

3、什么? (创设问题情景)简记同化已学过的知识即将学习的知识化归图1二、“相似三角形的判定”的教学研究(一)教学设计教学目标:1、掌握相似三角形的判定定理,并能初步运用这些知识解决有关问题。2、经历“观察探索猜测证明”的学习过程,体验科学发现的一般规律,同时提高几何的图形语言、符号语言、文字语言表达能力。3、通过相似三角形的判定定理的探索过程,渗透类比、化归等数学思想。4、通过合作交流、自主评价改进学生的学习方式,提高学习质量,逐步形成正确的数学价值观。教学过程:教学环节教师活动学生活动板书复习提问你知道的有关相似三角形的知识有哪些?(1)相似三角形的定义及预备定理。(2)全等三角形与相似三角形

4、的关系以及全等三角形的判定。在ABC和A1B1C1中:A=A1,BB1、,CC1全等三角形的判定A.S.A;A.A.S;S.A.S;S.S.S;H.L创设情景利用已有知识,能否解此题?如图,在边长为1个单位的方格纸上有ABC和BDE,猜测ABC与BDE是否相似。若相似,能证明吗?当运用已知知识(预备定理和定义)来证明这两个三角形相似面临困难时,产生寻求更为有效的、简便的判定方法需求?课题:相似三角形的判定探求新知1猜测根据全等三角形的判定(条件),利用相似三角形定义条件,选择尽可能少的条件判定两个三角形相似。小组讨论大胆猜测全等相似ASA两角对应相等AAASAS两边对应成比例且夹角相等SSS三

5、边对应成比例HL2证明以上猜想是否正确,必须证明,请学生选择他们希望首先证明的命题,逐一证明。小组讨论后,全班交流。(第一个命题的证明学生口述,教师板演,强调证明思路;第二、第三个命题证明学生口述)第一个判定定理证明全过程简单应用运用相似三角形的判定定理解“情境问题”独立思考,完成后全班交流比较学生的不同证法小结与自主评价提问:全等三角形是相似三角形的特例,那么,全等三角形的判定一定也是相似三角形判定的特例,若将全等三角形的判定纳入到相似三角形的判定中,全等三角形的判定用相似三角形的判定如何描述?反思和发表对本堂课的体验和收获布置作业必做题:练习册28.4(1)选做题:将课堂中的例题引申;(1

6、)ABE为几度;(2)连结AE,ABE是什么三角形?(3)将BED沿BD翻折,再沿BC平移后,均123为几度?(运动过程,多媒体展示) (二)课堂教学行为的变化 在课堂教学实施过程中,我们特别关注以下几个环节。1、基于已有认知准备,学生通过类比猜测判定两三角形相似的条件。在学生已回顾了全等三角形的判定以及相似三角形的定义后教师鼓励学生利用已有的知识,大胆猜测判定两三角形相似的可能条件。请看以下片断。1师:刚才同学们已经回顾了相似三角形的一些性质,以及全等三角形的判定方法,结合这些知识,请你思考一下,在这些条件中,选择尽可能少的条件来判断两个三角形的相似,讨论后回答。(学生讨论,教师巡视并参与组

7、内讨论)2生:A=A1,BB1(学生口述,教师板书)3师:还有吗?4生:AB/A1B1=AC/A1C1,且A=A1。(学生口述,教师板书)5师:6生:AB/A1B1=AC/A1C1BC/B1C1;(板书)还有比较复杂的。7师:噢,没关系,你说说看。8生:A=A1,BB1,AB/A1B1= BC/B1C1(板书)9师:好,请坐。他们小组得到了四种,其他小组看一看。有什么意见吗10生:前面三种我们小组同意,最后一种我们不同意,前面已有两个角相等了,只要这两个角相等,就能判定这两个三角形相似的话,后面的例式AB/A1B1= BC/B1C1是多余的.11在上述师生互动中,教学鼓励学生根据已有的知识及认

8、识策略,通过学生的合作与讨论猜测三角形相似的判定条件(),进一步在同伴的帮助下,明晰判定条件(),经历构建知识的活动体验。2、学生自主探究,验证命题。学生意识到通过类比猜测所得到的命题不一定都成立,因此学生有强烈地愿望去证明这些他们亲自构建的命题是否正确。于是,组织小组讨论,不探究命题的证明。在这一过程中,充分体现学生的自主合作与交流,倾听与评价。下面这一片段展示了同学之间的互帮互学:1请你说说你们的想法。已知:在ABC与A1B1C1,AB/A1B1=AC/A1C1BC/B1C1他要证的是“三边对应成比例,两三角形相似”在ABC中取ADA1B1在哪条边上取?在AB上截取ADA1B1,在AC上截

9、取AEAC/A1C1,连结DE,可以证出ADEA1B1C1很好,怎么证明这两个三角形全等?ADA1B1,AEA1C1,然后(学生证不下去了)他的想法很好,但在证明两个三角形全等时,遇到了困难谁能帮助他,好你来说说。因为ADA1B1,AEA1C1,且A1B1/ABA1C1 /AC,所以AD/ABAE/AC,所以DEBC,所以AD/ABDE/BC,又因为A1B1/ABB1C1 /BC,所以DEB1C1,所以ADEA1B1C1,又因为DEBC,所以ADEABC,所以ABCA1B1C1。在上述片段中,先是一位同学上黑板报告他们小组讨论的结果:证明“三边对应成比例,两三角形相似”,可是讲到一半,这位学生

10、“卡”住了(-)。此时,老师并没有急着将正确的证明教给学生,而是鼓励其他同学帮助这个同学修正和发展这一证明(,)。这样,教师仅作为问题的提供者,而将发言权交给学生,教学任务是在学生自主学习中完成的,学生才是学习的主体。3、反思交流,逐渐明晰化学生对概念或性质的理解通常经历一个从蒙胧(也许包含一些错误的理解)到明晰,直到灵活应用的过程,而这一过程需要学生通过不断的实践、交流和反思来完成的。自我的反思在这一过程中起着关键的作用。在这节课中,一开始,史莹璐同学提出“全等三角形的判定定理都可以用在相似三角形的判定中”,而且在教师的追问下,她一再坚持这个说法是正确的,考虑学生说法内含一定的合理成分,但仅

11、学生的当时知识基础,老师说“这个问题留着,新课上完后我们再来讨论”。这样很自然地为学生设计了一个反思的问题。等到介绍完了三个判定定理,把学生引向到讨论是否“全等三角形的判定定理都可以用在相似三角形的判定中”。师:我们再回到史莹璐提出的这个问题。“全等三角形的判定方法都可以用在相似三角形的判定上”。刚才,史莹璐同学还是认为她的观点是对的。噢,你说说。史莹璐:我现在认为,比如,全等中的S、S、S边、边、边只要把它的对应“相等”改为对应“成比例”,就可以用在相似三角形的判定中了。对,这样就对了。通过上述对话,学生通过这节课的学习与反思,把自己的观点明晰化,把原先原始的直觉观点,精致成为科学的论断。这

12、种过程的呈现,不仅对这位同学是一个主动学习与内化的过程,也促进了学生之间互相启发、取长补短的学习共同体的形成。三、实践反思(1)重视现代信息技术的应用现代信息技术的迅速发展和广泛应用,对数学课堂教学产生了重大的影响,现代信息技术的应用对于改善数学课堂教学过程,帮助学生理解数学知识本质和提高数学应用能力、改进学习方式起到重要作用。在第一次教学设计中,多媒体仅仅用作呈现教学材料的目的,而在第二次教学设计中,充分考虑如何用多媒技术来展示证明的思想方法及过程,以及通过图形的变换来揭示问题之间的内在联系,这样较好地把技术与数学学习的本质结构起来。正如在课后访谈中,同学在回答“今天这堂课留给你最好印象是什

13、么?”时,有的说“充分利用学校的硬件设备,使课堂变得生动、形象,我很喜欢”;也有的答道:多媒体教室里设备齐全,可以使老师做好充分准备,以致于不会浪费时间,毕竟四十分钟很有限”。的确,现代技术与课程内容整合,可将数学中抽象的东西直观化,展示思维的过程,对于改进教学,提高教学质量有着积极作用。(2)任务的创设与使用课堂总是围绕某些任务(或问题)而展开的。一个精心设计的问题,不仅可以用来激发学生学习新知识的动机,也可用来作为应用学习新知识的载体,更可通过适当的变式使问题解决延伸到课堂以外,拓展学生探究的空间。在这节课中贯穿始终的只有一个任务(即判定方格纸中两个三角形的相似性),在课的开头,它作为激发

14、学生探究“三角形相似判定”的问题情境。在学习了新知识后,它成为学生运用新知来解决此问题自然平台,使学生有学以致用的成就感。此外,当学生解决了这个问题时,教师再将此题引申形成新的具有挑战性的问题,并将问题延伸到课后。这样不仅使这节课前后呼应,内在一致,而且为学生的主动探究,从情感与认知两方面都提供了合理的载体。这样的教学往往给人新鲜的感觉,能唤起学生的好奇心和求知欲,因而产生主动参与的动力。然而,第一次教学设计中,任务的创设主要是为激发学习动机的情境服务。而在第二次教学设计中,创设的任务贯穿于整个课堂:激发动机,知识应用,课后探究。(3)关注学习方式的改变在以往的教学中,我们往往关注知识的传授与

15、获得。例如,在本节课的教学中,会把学生是否掌握相似三角形的判定定理作为教学成功与否的唯一标准。而在这节课的处理时,教师更关注对思想方法的理解。本课由类比全等三角形的判定猜想得到相似三角形的判定,企盼在这一过程中,学生能了解两者的内在联系,理解蕴含在其中的辩证唯物主义思想。在证明相似三角形判定定理的过程中,始终贯彻“化归”的思想,从而达到突破教学难点的目的。此外,我们更关注学生的学习方式。从形式上,将课堂教学的空间形式由原来的“秧田式”座位排列改为T型排列,缩短了学生与学生之间的距离,增强了学生间的相互交流的机会,形成合作学习的课堂氛围。从本质上说,这节课的教学试图体现对“相似型”知识”的学习方

16、式:利用已有知识,通过类比与化归来构建新知。(4)、关注学生的反思性学习在课的最后,留出5分钟的时间,让学生交流本堂课中的体验及收获。这种交流是开放式的。它包括知识上的收获,能力上的提高,数学思想、方法的领悟,过程的体验与感受,以及对老师、同伴、自身教学行为的反思、评价。同时,学生也可以对本堂课进行质疑,说出心中的疑惑,谈谈自己不同的见解。在本节课中,学生自主评价提到如下几个方面(1)数学思想方法:类比、化归。生1:我们学习相似三角形的判定是结合全等三角形的判定得到的。生2:相似三角形的判定定理的证明都是用预备定理来解决的。(2)同伴互助。生3:我第一次站起来讲错了,但经同学的帮助,我现在学会

17、了。(3)自主发现。生4:我认为今天我们学到的三个判定定理比预备定理更加有用、实用。(4)学生质疑。生5:为什么全等中的A.A.S在相似三角形中没有对应的判定定理。立刻有学生回答了这个问题:A.A.S没有必要去证它,困为A.S.A与A.A.S都对应于“两角对应相等”。此外,全等三角形与相似三角形的特殊关系在“小结与自主评价”这一教学环节中得以升华,在由学生认识到,把“全等三角形三边对应相等”改为“相似三角形三边对应成比例”后,教师提出“能否将全等三角形的判定定理纳入到相似三角形的判定定理中,用相似三角形的判定定理来描述”这一问题,使学生真正领悟到全等三角形与相似三角形两者之间的内在联系。可见,

18、自主评价是数学教学过程中极为重要的一环,是学生一节课的升华阶段,我们提倡“让学生在学习过程中评价,在评价过程中学习”,并且认为,学生长期经历自主评价,能形成价值判断意识,获得强劲的评价能力,逐步树立正确的数学价值观。参考文献 1张奠宙、李士錡、李俊。数学教育学导论。高等教育出版社。2003年4月,第125页。(上海市民办梅陇中学 李贞, 上海普陀区教育学院 叶锦义 )专家评点:本课例关注一个有一定共性的“相似型”知识的教学问题,而且大胆地突破了常规处理。这种探究对日常教学有直接的启示作用。在整个课例的设计、实施、反思和改进过程中,始终关注数学学习规律的应用(将新知识建立在学生原有的知识准备之上),强调利用类比和化归思想来主动建构数学知识,追求学习方式的转变(观察探索猜测证明的学习过程)。而实现这一设计理念的一个关键是合适的情境创设。本课例中,一个精心设计的“判定方格纸中两个三角形的相似性”问题,不仅用来激发学生学习新知识的动机,也用来作为应用学习新知识的载体,而且通过适当的变式使问题解决延伸到课堂以外,拓展学生探究的空间。另外,通过主自评价对课堂学习进行质疑、反思和评价,培养学生监控学习过程的元认知能力的做法也值得借鉴。(评点人:黄荣金)

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1