1、244-176=68(只). 每只鸡比每只兔子少(4-2)只脚, 682=34(只). 说明设想中的,有34只是兔子,也可以列出公式 兔数=(总脚数-鸡脚数总头数)上面两个公式不必都用,用其中一个算出兔数或鸡数,再用总头数去减,就知道另一个数. 假设全是鸡,或者全是兔,通常用这样的思路求解,有人称为. 现在,拿一个具体问题来试试上面的公式. 例2 红铅笔每支0.19元,蓝铅笔每支0.11元,两种铅笔共买了16支,花了2.80元.问红,蓝铅笔各买几支?以分作为钱的单位.我们设想,一种有11只脚,一种有19只脚,它们共有16个头,280只脚. 现在已经把买铅笔问题,转化成问题了.利用上面算兔数公式
2、,就有 蓝笔数=(1916-280)(19-11) =248 =3(支). 红笔数=16-3=13(支). 买了13支红铅笔和3支蓝铅笔. 对于这类问题的计算,常常可以利用已知脚数的特殊性.例2中的19与11之和是30.我们也可以设想16只中,8只是,8只是,根据这一设想,脚数是 8(11+19)=240(支). 比280少40. 40(19-11)=5(支). 就知道设想中的8只应少5只,也就是(蓝铅笔)数是3. 308比1916或1116要容易计算些.利用已知数的特殊性,靠心算来完成计算. 实际上,可以任意设想一个方便的兔数或鸡数.例如,设想16只中,兔数为10,鸡数为6,就有脚数 191
3、0+116=256. 比280少24. 24(19-11)=3, 就知道设想6只,要少3只. 要使设想的数,能给计算带来方便,常常取决于你的心算本领. 下面再举四个稍有难度的例子. 例3 一份稿件,甲单独打字需6小时完成.乙单独打字需10小时完成,现在甲单独打若干小时后,因有事由乙接着打完,共用了7小时.甲打字用了多少小时 ?我们把这份稿件平均分成30份(30是6和10的最小公倍数),甲每小时打306=5(份),乙每小时打3010=3(份). 现在把甲打字的时间看成兔头数,乙打字的时间看成头数,总头数是7.的脚数是5,的脚数是3,总脚数是30,就把问题转化成问题了. 根据前面的公式 数=(30
4、-37)(5-3) =4.5, 数=7-4.5 =2.5, 也就是甲打字用了4.5小时,乙打字用了2.5小时. 甲打字用了4小时30分. 例4 今年是1998年,父母年龄(整数)和是78岁,兄弟的年龄和是17岁.四年后(2002年)父的年龄是弟的年龄的4倍,母的年龄是兄的年龄的3倍.那么当父的年龄是兄的年龄的3倍时,是公元哪一年 ?4年后,两人年龄和都要加8.此时兄弟年龄之和是17+8=25,父母年龄之和是78+8=86.我们可以把兄的年龄看作头数,弟的年龄看作头数.25是总头数.86是总脚数.根据公式,兄的年龄是 (254-86)(4-3)=14(岁). 1998年,兄年龄是 14-4=10
5、(岁). 父年龄是 (25-14)4-4=40(岁). 因此,当父的年龄是兄的年龄的3倍时,兄的年龄是 (40-10)(3-1)=15(岁). 这是2003年. 公元2003年时,父年龄是兄年龄的3倍. 例5 蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀.现在这三种小虫共18只,有118条腿和20对翅膀.每种小虫各几只 ?因为蜻蜓和蝉都有6条腿,所以从腿的数目来考虑,可以把小虫分成8条腿与6条腿两种.利用公式就可以算出8条腿的 蜘蛛数=(118-618)(8-6) =5(只). 因此就知道6条腿的小虫共 18-5=13(只). 也就是蜻蜓和蝉共有13只,它们共有20对翅膀.再利用
6、一次公式 蝉数=(132-20)(2-1)=6(只). 因此蜻蜓数是13-6=7(只). 有5只蜘蛛,7只蜻蜓,6只蝉. 例6 某次数学考试考五道题,全班52人参加,共做对181道题,已知每人至少做对1道题,做对1道的有7人,5道全对的有6人,做对2道和3道的人数一样多,那么做对4道的人数有多少人 ?对2道,3道,4道题的人共有 52-7-6=39(人). 他们共做对 181-17-56=144(道). 由于对2道和3道题的人数一样多,我们就可以把他们看作是对2.5道题的人(2+3)2=2.5).这样 兔脚数=4,鸡脚数=2.5, 总脚数=144,总头数=39. 对4道题的有 (144-2.5
7、39)(4-2.5)=31(人). 做对4道题的有31人. 习题一 1.龟鹤共有100个头,350只脚.龟,鹤各多少只 ?2.学校有象棋,跳棋共26副,恰好可供120个学生同时进行活动.象棋2人下一副棋,跳棋6人下一副.象棋和跳棋各有几副 ?3.一些2分和5分的硬币,共值2.99元,其中2分硬币个数是5分硬币个数的4倍,问5分硬币有多少个 ?4.某人领得工资240元,有2元,5元,10元三种人民币,共50张,其中2元与5元的张数一样多.那么2元,5元,10元各有多少张 ?5.一件工程,甲单独做12天完成,乙单独做18天完成,现在甲做了若干天后,再由乙接着单独做完余下的部分,这样前后共用了16天
8、.甲先做了多少天 ?6.摩托车赛全程长281千米,全程被划分成若干个阶段,每一阶段中,有的是由一段上坡路(3千米),一段平路(4千米),一段下坡路(2千米)和一段平路(4千米)组成的;有的是由一段上坡路(3千米),一段下坡路(2千米)和一段平路(4千米)组成的.已知摩托车跑完全程后,共跑了25段上坡路.全程中包含这两种阶段各几段 ?7.用1元钱买4分,8分,1角的邮票共15张,问最多可以买1角的邮票多少张?二,两数之差的问题 鸡兔同笼中的总头数是两数之和,如果把条件换成,又应该怎样去解呢 例7 买一些4分和8分的邮票,共花6元8角.已知8分的邮票比4分的邮票多40张,那么两种邮票各买了多少张
9、?解一:如果拿出40张8分的邮票,余下的邮票中8分与4分的张数就一样多. (680-840)(8+4)=30(张), 这就知道,余下的邮票中,8分和4分的各有30张. 因此8分邮票有 40+30=70(张). 买了8分的邮票70张,4分的邮票30张. 也可以用任意假设一个数的办法. 解二:譬如,假设有20张4分,根据条件8分比4分多40张,那么应有60张8分.以作为计算单位,此时邮票总值是 420+860=560. 比680少,因此还要增加邮票.为了保持差是40,每增加1张4分,就要增加1张8分,每种要增加的张数是 (680-420-860)(4+8)=10(张). 因此4分有20+10=30
10、(张),8分有60+10=70(张). 例8 一项工程,如果全是晴天,15天可以完成.倘若下雨,雨天一天 ?工程要多少天才能完成 类似于例3,我们设工程的全部工作量是150份,晴天每天完成10份,雨天每天完成8份.用上一例题解一的方法,晴天有 (150-83)(10+8)= 7(天). 雨天是7+3=10天,总共 7+10=17(天). 这项工程17天完成. 请注意,如果把雨天比晴天多3天去掉,而换成已知工程是17天完成,由此又回到上一节的问题.差是3,与和是17,知道其一,就能推算出另一个.这说明了例7,例8与上一节基本问题之间的关系. 总脚数是例9 鸡与兔共100只,鸡的脚数比兔的脚数少2
11、8.问鸡与兔各几只 ?假如再补上28只鸡脚,也就是再有鸡282=14(只),鸡与兔脚数就相等,兔的脚是鸡的脚42=2(倍),于是鸡的只数是兔的只数的2倍.兔的只数是 (100+282)(2+1)=38(只). 鸡是 100-38=62(只). 鸡62只,兔38只. 当然也可以去掉兔284=7(只).兔的只数是 (100-284)(2+1)+7=38(只). 假设有50只鸡,就有兔100-50=50(只).此时脚数之差是 50-250=100, 比28多了72.就说明假设的兔数多了(鸡数少了).为了保持总数是100,一只兔换成一只鸡,少了4只兔脚,多了2只鸡脚,相差为6只(千万注意,不是2).因
12、此要减少的兔数是 (100-28)(4+2)=12(只). 兔只数是 50-12=38(只). 另外,还存在下面这样的问题:总头数换成,总脚数也换成例10 古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一诗选集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字.问两种诗各多少首?如果去掉13首五言绝句,两种诗首数就相等,此时字数相差 1354+20=280(字). 每首字数相差 74-54=8(字). 因此,七言绝句有 280(28-20)=35(首). 五言绝句有 35+13=48(首). 五言绝句48首,七言绝句35首. 假设五言绝句是23首,那么根
13、据相差13首,七言绝句是10首.字数分别是2023=460(字),2810=280(字),五言绝句的字数,反而多了 460-280=180(字). 与题目中少20字相差 180+20=200(字). 说明假设诗的首数少了.为了保持相差13首,增加一首五言绝句,也要增一首七言绝句,而字数相差增加8.因此五言绝句的首数要比假设增加 2008=25(首). 23+25=48(首). 七言绝句有 10+25=35(首). 在写出公式的时候,我们假设都是兔,或者都是鸡,对于例7,例9和例10三个问题,当然也可以这样假设.现在来具体做一下,把列出的计算式子与公式对照一下,就会发现非常有趣的事. 例7,假设
14、都是8分邮票,4分邮票张数是 (8+4)=30(张). 例9,假设都是兔,鸡的只数是 (1004-28)(4+2)=62(只). 10,假设都是五言绝句,七言绝句的首数是 (2013+20)首先,请读者先弄明白上面三个算式的由来,然后与公式比较,这三个算式只是有一处-成了+.其奥妙何在呢 当你进入初中,有了负数的概念,并会列二元一次方程组,就会明白,从数学上说,这一讲前两节列举的所有例子都是同一件事. 例11 有一辆货车运输2000只玻璃瓶,运费按到达时完好的瓶子数目计算,每只2角,如有破损,破损瓶子不给运费,还要每只赔偿1元.结果得到运费379.6元,问这次搬运中玻璃瓶破损了几只 ?如果没有
15、破损,运费应是400元.但破损一只要减少1+0.2=1.2(元).因此破损只数是 (400-379.6)(1+0.2)=17(只). 这次搬运中破损了17只玻璃瓶. 请你想一想,这是同一类型的问题吗 例12 有两次自然测验,第一次24道题,答对1题得5分,答错(包含不答)1题倒扣1分;第二次15道题,答对1题8分,答错或不答1题倒扣2分,小明两次测验共答对30道题,但第一次测验得分比第二次测验得分多10分,问小明两次测验各得多少分 ?如果小明第一次测验24题全对,得524=120(分).那么第二次只做对30-24=6(题)得分是 6-2(15-6)=30(分). 两次相差 120-30=90(
16、分). 比题目中条件相差10分,多了80分.说明假设的第一次答对题数多了,要减少.第一次答对减少一题,少得5+1=6(分),而第二次答对增加一题不但不倒扣2分,还可得8分,因此增加8+2=10分.两者两差数就可减少 6+10=16(分). (90-10)(6+10)=5(题). 因此,第一次答对题数要比假设(全对)减少5题,也就是第一次答对19题,第二次答对30-19=11(题). 第一次得分 519-1(24- 9)=90. 第二次得分 11-2(15-11)=80. 第一次得90分,第二次得80分. 答对30题,也就是两次共答错 24+15-30=9(题). 第一次答错一题,要从满分中扣去
17、5+1=6(分),第二次答错一题,要从满分中扣去8+2=10(分).答错题互换一下,两次得分要相差6+10=16(分). 如果答错9题都是第一次,要从满分中扣去69.但两次满分都是120分.比题目中条件第一次得分多10分,要少了69+10.因此,第二次答错题数是 (69+10)(6+10)=4(题)第一次答错 9-4=5(题). 第一次得分 5(24-5)-15=90(分). 第二次得分 8(15-4)-24=80(分). 习题二 1.买语文书30本,数学书24本共花83.4元.每本语文书比每本数学书贵0.44元.每本语文书和数学书的价格各是多少 ?2.甲茶叶每千克132元,乙茶叶每千克96元
18、,共买这两种茶叶12千克.甲茶叶所花的钱比乙茶叶所花钱少354元.问每种茶叶各买多少千克?3.一辆卡车运矿石,晴天每天可运16次,雨天每天只能运11次.一连运了若干天,有晴天,也有雨天.其中雨天比晴天多3天,但运的次数却比晴天运的次数少27次.问一连运了多少天 ?4.某次数学测验共20道题,做对一题得5分,做错一题倒扣1分,不做得0分.小华得了76分.问小华做对了几道题 ?5.甲,乙二人射击,若命中,甲得4分,乙得5分;若不中,甲失2分,乙失3分.每人各射10发,共命中14发.结算分数时,甲比乙多10分.问甲,乙各中几发 ?6.甲,乙两地相距12千米.小张从甲地到乙地,在停留半小时后,又从乙地
19、返回甲地,小王从乙地到甲地,在甲地停留40分钟后,又从甲地返回乙地.已知两人同时分别从甲,乙两地出发,经过4小时后,他们在返回的途中相遇.如果小张速度比小王速度每小时多走1.5千米,求两人的速度. ?三,从三到二和是两种东西,实际上还有三种或者更多种东西的类似问题.在第一节例5和例6就都有三种东西.从这两个例子的解法,也可以看出,要把三种转化成二种来考虑.这一节要通过一些例题,告诉大家两类转化的方法. 例13 学校组织新年游艺晚会,用于奖品的铅笔,圆珠笔和钢笔共232支,共花了300元.其中铅笔数量是圆珠笔的4倍.已知铅笔每支0.60元,圆珠笔每支2.7元,钢笔每支6.3元.问三种笔各有多少支
20、 从条件铅笔数量是圆珠笔的4倍,这两种笔可并成一种笔,四支铅笔和一支圆珠笔成一组,这一组的笔,每支价格算作 (0.604+2.7)5=1.02(元). 现在转化成价格为1.02和6.3两种笔.用公式可算出,钢笔支数是 (300-1.02232)(6.3-1.02)=12(支). 铅笔和圆珠笔共 232-12=220(支). 其中圆珠笔 220(4+1)=44(支). 铅笔 220-44=176(支). 其中钢笔12支,圆珠笔44支,铅笔176支. 例14 商店出售大,中,小气球,大球每个3元,中球每个1.5元,小球每个1元.张老师用120元共买了55个球,其中买中球的钱与买小球的钱恰好一样多.
21、问每种球各买几个 因为总钱数是整数,大,小球的价钱也都是整数,所以买中球的钱数是整数,而且还是3的整数倍.我们设想买中球,小球钱中各出3元.就可买2个中球,3个小球.因此,可以把这两种球看作一种,每个价钱是 (1.52+1(2+3)=1.2(元). 从公式可算出,大球个数是 (120-1.255)(3-1.2)=30(个). 买中,小球钱数各是 (120-302=15(元). 可买10个中球,15个小球. 买大球30个,中球10个,小球15个. 例13是从两种东西的个数之间倍数关系,例14是从两种东西的总钱数之间相等关系(倍数关系也可用类似方法),把两种东西合井成一种考虑,实质上都是求两种东西
22、的平均价,就把了. 例15是为例16作准备. 例15 某人去时上坡速度为每小时走3千米,回来时下坡速度为每小时走6千米,求他的平均速度是多少 去和回来走的距离一样多.这是我们考虑问题的前提. 平均速度=所行距离所用时间 去时走1千米,要用20分钟;回来时走1千米,要用10分钟.来回共走2千米,用了30分钟,即半小时,平均速度是每小时走4千米. 千万注意,平均速度不是两个速度的平均值:每小时走(6+3)2=4.5千米. 例16 从甲地至乙地全长45千米,有上坡路,平路,下坡路.李强上坡速度是每小时3千米,平路上速度是每小时5千米,下坡速度是每小时6千米.从甲地到乙地,李强行走了10小时;从乙地到
23、甲地,李强行走了11小时.问从甲地到乙地,各种路段分别是多少千米 把来回路程452=90(千米)算作全程.去时上坡,回来是下坡;去时下坡回来时上坡.把上坡和下坡合并成一种路程,根据例15,平均速度是每小时4千米.现在形成一个非常简单的问题.头数10+11=21,总脚数90,鸡,兔脚数分别是4和5.因此平路所用时间是 (90-421)(5-4)=6(小时). 单程平路行走时间是62=3(小时). 从甲地至乙地,上坡和下坡用了10-3=7(小时)行走路程是 :45-53=30(千米). 又是一个问题.从甲地至乙地,上坡行走的时间是:7-30)(6-3)=4(小时). 行走路程是34=12(千米).
24、 下坡行走的时间是7-4=3(小时).行走路程是63=18(千米). 从甲地至乙地,上坡12千米,平路15千米,下坡18千米. 做两次的解法,也可以叫两重鸡兔同笼问题.例16是非常典型的例题. 例17 某种考试已举行了24次,共出了426题.每次出的题数,有25题,或者16题,或者20题.那么,其中考25题的有多少次 如果每次都考16题,1624=384,比426少42道题. 每次考25道题,就要多25-16=9(道). 每次考20道题,就要多20-16=4(道). 就有 9考25题的次数+4考20题的次数=42. 请注意,4和42都是偶数,9考25题次数也必须是偶数,因此,考25题的次数是偶
25、数,由96=54比42大,考25题的次数,只能是0,2,4这三个数.由于42不能被4整除,0和4都不合适.只能是考25题有2次(考20题有6次). 其中考25题有2次. 例18 有50位同学前往参观,乘电车前往每人1.2元,乘小巴前往每人4元,乘地下铁路前往每人6元.这些同学共用了车费110元,问其中乘小巴的同学有多少位 由于总钱数110元是整数,小巴和地铁票也都是整数,因此乘电车前往的人数一定是5的整数倍. 如果有30人乘电车, 110-1.230=74(元). 还余下50-30=20(人)都乘小巴钱也不够.说明假设的乘电车人数少了. 如果有40人乘电车 40=62(元). 还余下50-40=10(人)都乘地下铁路前往,钱还有多(62610).说明假设的乘电车人数又多了.30至40之间,只有35是5的整数倍. 现在又可以转化成了:总头数 50-35=15, 总脚数 110-1.235=68. 因此,乘小巴前往的人数是 15-68)(6-4)=11. 乘小巴前往的同学有11位. 在转化为时,例13,例14,例16是一种类型.利用题目中数量比例关系,把两种东西合并组成一
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1