ImageVerifierCode 换一换
格式:DOCX , 页数:32 ,大小:70.02KB ,
资源ID:18208177      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/18208177.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(POSIX线程Word文档格式.docx)为本站会员(b****5)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

POSIX线程Word文档格式.docx

1、所以,程序中的所有线程都可以读或写声明过的全局变量。如果曾用 fork() 编写过重要代码,就会认识到这个工具的重要性。为什么呢?虽然 fork() 允许创建多个进程,但它还会带来以下通信问题: 如何让多个进程相互通信,这里每个进程都有各自独立的内存空间。对这个问题没有一个简单的答案。虽然有许多不同种类的本地 IPC (进程间通信),但它们都遇到两个重要障碍: 强加了某种形式的额外内核开销,从而降低性能。 对于大多数情形,IPC 不是对于代码的“自然”扩展。通常极大地增加了程序的复杂性。双重坏事: 开销和复杂性都非好事。如果曾经为了支持 IPC 而对程序大动干戈过,那么您就会真正欣赏线程提供的

2、简单共享内存机制。由于所有的线程都驻留在同一内存空间,POSIX 线程无需进行开销大而复杂的长距离调用。只要利用简单的同步机制,程序中所有的线程都可以读取和修改已有的数据结构。而无需将数据经由文件描述符转储或挤入紧窄的共享内存空间。仅此一个原因,就足以让您考虑应该采用单进程/多线程模式而非多进程/单线程模式。回页首线程是快捷的不仅如此。线程同样还是非常快捷的。与标准 fork() 相比,线程带来的开销很小。内核无需单独复制进程的内存空间或文件描述符等等。这就节省了大量的 CPU 时间,使得线程创建比新进程创建快上十到一百倍。因为这一点,可以大量使用线程而无需太过于担心带来的 CPU 或内存不足

3、。使用 fork() 时导致的大量 CPU 占用也不复存在。这表示只要在程序中有意义,通常就可以创建线程。当然,和进程一样,线程将利用多 CPU。如果软件是针对多处理器系统设计的,这就真的是一大特性(如果软件是开放源码,则最终可能在不少平台上运行)。特定类型线程程序(尤其是 CPU 密集型程序)的性能将随系统中处理器的数目几乎线性地提高。如果正在编写 CPU 非常密集型的程序,则绝对想设法在代码中使用多线程。一旦掌握了线程编码,无需使用繁琐的 IPC 和其它复杂的通信机制,就能够以全新和创造性的方法解决编码难题。所有这些特性配合在一起使得多线程编程更有趣、快速和灵活。线程是可移植的如果熟悉 L

4、inux 编程,就有可能知道 _clone() 系统调用。_clone() 类似于 fork(),同时也有许多线程的特性。例如,使用 _clone(),新的子进程可以有选择地共享父进程的执行环境(内存空间,文件描述符等)。这是好的一面。但 _clone() 也有不足之处。正如_clone() 在线帮助指出:“_clone 调用是特定于 Linux 平台的,不适用于实现可移植的程序。欲编写线程化应用程序(多线程控制同一内存空间),最好使用实现 POSIX 1003.1c 线程 API 的库,例如 Linux-Threads 库。参阅 pthread_create(3thr)。”虽然 _clone

5、() 有线程的许多特性,但它是不可移植的。当然这并不意味着代码中不能使用它。但在软件中考虑使用 _clone() 时应当权衡这一事实。值得庆幸的是,正如 _clone() 在线帮助指出,有一种更好的替代方案:POSIX 线程。如果想编写可移植的多线程代码,代码可运行于 Solaris、FreeBSD、Linux 和其它平台,POSIX 线程是一种当然之选。第一个线程下面是一个 POSIX 线程的简单示例程序:thread1.c#include stdlib.hunistd.h void *thread_function(void *arg) int i; for ( i=0; iint myg

6、lobal; int i,j; j=myglobal; j=j+1;. fflush(stdout); myglobal=j; myglobal=myglobal+1;onmyglobal equals %dn,myglobal);理解 thread2.c如同第一个程序,这个程序创建一个新线程。主线程和新线程都将全局变量 myglobal 加一 20 次。但是程序本身产生了某些意想不到的结果。编译代码请输入:$ gcc thread2.c -o thread2 -lpthread运行请输入:$ ./thread2输出:.o.o.o.o.oo.o.o.o.o.o.o.o.o.o.o.o.o.o.

7、omyglobal equals 21非常意外吧!因为 myglobal 从零开始,主线程和新线程各自对其进行了 20 次加一, 程序结束时 myglobal 值应当等于 40。由于 myglobal 输出结果为 21,这其中肯定有问题。但是究竟是什么呢?放弃吗?好,让我来解释是怎么一回事。首先查看函数 thread_function()。注意如何将 myglobal 复制到局部变量 j 了吗? 接着将 j 加一, 再睡眠一秒,然后到这时才将新的 j 值复制到 myglobal?这就是关键所在。设想一下,如果主线程就在新线程将 myglobal 值复制给 j后立即将 myglobal 加一,会

8、发生什么?当 thread_function() 将 j 的值写回 myglobal 时,就覆盖了主线程所做的修改。当编写线程程序时,应避免产生这种无用的副作用,否则只会浪费时间(当然,除了编写关于 POSIX 线程的文章时有用)。那么,如何才能排除这种问题呢?由于是将 myglobal 复制给 j 并且等了一秒之后才写回时产生问题,可以尝试避免使用临时局部变量并直接将 myglobal 加一。虽然这种解决方案对这个特定例子适用,但它还是不正确。如果我们对 myglobal 进行相对复杂的数学运算,而不是简单的加一,这种方法就会失效。但是为什么呢?要理解这个问题,必须记住线程是并发运行的。即使

9、在单处理器系统上运行(内核利用时间分片模拟多任务)也是可以的,从程序员的角度,想像两个线程是同时执行的。thread2.c 出现问题是因为 thread_function() 依赖以下论据:在 myglobal 加一之前的大约一秒钟期间不会修改 myglobal。需要有些途径让一个线程在对 myglobal 做更改时通知其它线程“不要靠近”。我将在下一篇文章中讲解如何做到这一点。到时候见。通用线程:POSIX 线程详解,第 2部分称作互斥对象的小玩意POSIX 线程是提高代码响应和性能的有力手段。在此三部分系列文章的第二篇中,Daniel Robbins 将说明,如何使用被称为互斥对象的灵巧小

10、玩意,来保护线程代码中共享数据结构的完整性。2000 年 8 月 01 日17288 次浏览0平均分 (37个评分)互斥我吧!在前一篇文章中,谈到了会导致异常结果的线程代码。两个线程分别对同一个全局变量进行了二十次加一。变量的值最后应该是 40,但最终值却是 21。这是怎么回事呢?因为一个线程不停地“取消”了另一个线程执行的加一操作,所以产生这个问题。现在让我们来查看改正后的代码,它使用互斥对象(mutex)来解决该问题:thread3.cpthread_mutex_t mymutex=PTHREAD_MUTEX_INITIALIZER; pthread_mutex_lock(&mymutex

11、); pthread_mutex_unlock(&解读一下如果将这段代码与前一篇文章中给出的版本作一个比较,就会注意到增加了 pthread_mutex_lock() 和 pthread_mutex_unlock() 函数调用。在线程程序中这些调用执行了不可或缺的功能。他们提供了一种相互排斥的方法(互斥对象即由此得名)。两个线程不能同时对同一个互斥对象加锁。互斥对象是这样工作的。如果线程 a 试图锁定一个互斥对象,而此时线程 b 已锁定了同一个互斥对象时,线程 a 就将进入睡眠状态。一旦线程 b 释放了互斥对象(通过 pthread_mutex_unlock() 调用),线程 a 就能够锁定这

12、个互斥对象(换句话说,线程 a 就将从 pthread_mutex_lock() 函数调用中返回,同时互斥对象被锁定)。同样地,当线程 a 正锁定互斥对象时,如果线程 c 试图锁定互斥对象的话,线程 c 也将临时进入睡眠状态。对已锁定的互斥对象上调用 pthread_mutex_lock() 的所有线程都将进入睡眠状态,这些睡眠的线程将“排队”访问这个互斥对象。通常使用 pthread_mutex_lock() 和 pthread_mutex_unlock() 来保护数据结构。这就是说,通过线程的锁定和解锁,对于某一数据结构,确保某一时刻只能有一个线程能够访问它。可以推测到,当线程试图锁定一个

13、未加锁的互斥对象时,POSIX 线程库将同意锁定,而不会使线程进入睡眠状态。请看这幅轻松的漫画,四个小精灵重现了最近一次 pthread_mutex_lock() 调用的一个场面。图中,锁定了互斥对象的线程能够存取复杂的数据结构,而不必担心同时会有其它线程干扰。那个数据结构实际上是“冻结”了,直到互斥对象被解锁为止。pthread_mutex_lock() 和 pthread_mutex_unlock() 函数调用,如同“在施工中”标志一样,将正在修改和读取的某一特定共享数据包围起来。这两个函数调用的作用就是警告其它线程,要它们继续睡眠并等待轮到它们对互斥对象加锁。当然,除非在每个对特定数据结

14、构进行读写操作的语句前后,都分别放上 pthread_mutex_lock() 和 pthread_mutext_unlock() 调用,才会出现这种情况。为什么要用互斥对象?听上去很有趣,但究竟为什么要让线程睡眠呢?要知道,线程的主要优点不就是其具有独立工作、更多的时候是同时工作的能力吗?是的,确实是这样。然而,每个重要的线程程序都需要使用某些互斥对象。让我们再看一下示例程序以便理解原因所在。请看 thread_function(),循环中一开始就锁定了互斥对象,最后才将它解锁。在这个示例程序中,mymutex 用来保护 myglobal 的值。仔细查看 thread_function(),

15、加一代码把 myglobal 复制到一个局部变量,对局部变量加一,睡眠一秒钟,在这之后才把局部变量的值传回给 myglobal。不使用互斥对象时,即使主线程在 thread_function() 线程睡眠一秒钟期间内对 myglobal 加一,thread_function() 苏醒后也会覆盖主线程所加的值。使用互斥对象能够保证这种情形不会发生。(您也许会想到,我增加了一秒钟延迟以触发不正确的结果。把局部变量的值赋给 myglobal 之前,实际上没有什么真正理由要求 thread_function() 睡眠一秒钟。)使用互斥对象的新程序产生了期望的结果:$ ./thread3o.o.o.o.o.o.o.o.o.o.o.o.o.ooooooomyglobal equals 40为了进一步探索这个极为重要的概念,让我们看一看程序中进行加一操作的代码:thread_function() 加一代码:主线程加一代码:如果代码是位于单线程程序中,可

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1