ImageVerifierCode 换一换
格式:DOCX , 页数:8 ,大小:238.31KB ,
资源ID:18087053      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/18087053.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(第四章1ZnS中电子陷阱能级对光电子瞬态过程的影响Word下载.docx)为本站会员(b****4)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

第四章1ZnS中电子陷阱能级对光电子瞬态过程的影响Word下载.docx

1、样品2:将光谱纯10g ZnS原料掺入2g光谱纯的S和2g的NaCl作助熔剂,其他过程同样品1。样品3:在NH4Br气氛中950灼烧10g高纯的ZnS,时间为2小时,清洗备用。样品4、5:取光谱纯的10gZnS原料,加入2g NaCl和2g S,掺入0.01Eu(ZnS的质量比,Eu(NO3)3),加入适量的NaCl、MgCl、SrCl作助溶剂,在高温1205灼烧3小时,制备出4、5号样品。在紫外光激发下发出蓝绿色荧光,具有明显的长余辉特征。样品6:在高纯ZnS加入适量的NaCl作助溶剂,在高温1205灼烧3小时,制备出6号材料。在制备材料1的过程中,由于所加入的助溶剂较多,助溶剂完全覆盖了Z

2、nS原料,所合成的晶体在紫外线照射下为不发可见光的粉体。材料2的制备过程中,所加助溶剂较少,材料受到氧化作用,有较强的绿色荧光,且有较长的余辉,紫外照射下发出绿色荧光。材料3也存在较强的绿色荧光,但在室温下没有发现余辉发光。412 样品热释光测量如图1所示是三种材料的热释光曲线,从图中可以看出,材料1 在-160有一发光峰,但热释光强度很小,相对值1.85。材料3的热释光峰值位置-150,发光峰相对值是76.5,对应Br-掺杂形成的电子陷阱能级。材料2热释光曲线在-148和 -77出现两个峰值,相对值分别为132、148。图1. 样品的热释光曲线Fig1. The curves of samp

3、les thermoluminescence由上可见,三种不同条件制备的样品的热释光曲线和光电子衰减曲线有明显不同,在制备材料1的过程中,由于加入SrCl助熔剂较多,助溶剂可完全覆盖ZnS材料,氧化作用较小,晶体缺陷较少,晶体内形成的电子陷阱能级也较少,因而热释光强度非常小。而在NH4Br气氛中灼烧的材料中,有大量Br-进入到晶体中,形成较多的浅电子陷阱,因而有较强的热释光。以少量的NaCl作助溶剂灼烧的材料中,由于助溶剂较少,不能完全覆盖ZnS材料,在空气中的受到氧化作用,形成深浅两个电子陷阱能级。其浅电子陷阱能级和Cl-等有关,比样品3的电子陷阱能级略深且密度略大;其深能级可能是由于表面形

4、成的ZnO和ZnS复合结构或S空位有关。423 微波介电谱测量图2(a)为样品1的自由光电子衰减曲线。其纵坐标为微波吸收功率的变化,信号强度与自由光电子数密度成正比,横坐标为衰减时间。将衰减曲线做成半对数曲线如图2(b)所示,光电子衰减出现快慢两个指数过程,快过程寿命为45ns,慢过程仍为指数衰减,自由光电子寿命为312ns。图2 ZnS(SrCl) 光电子衰减曲线图3(a)为样品3的自由光电子衰减曲线。将自由光电子数和时间关系作成半对数关系曲线,如图3(b)所示,可以看出导带光电子的衰减为指数衰减,自由光电子寿命为1914ns。图4(a)所示为样品3的浅陷阱电子的衰减曲线。将电子密度和时间关

5、系作成半对数关系曲线,如图4(b)所示,从衰减对数曲线可以看出电子的衰减为指数衰减,寿命为2375ns。图3 ZnS(NH4Br)导带光生电子衰减曲线图4 ZnS(NH4Br)浅陷阱电子衰减曲线Fig4.The decay curve for shallow electron of ZnS(NH4Br)图5 ZnS(NaCl)光电子衰减曲线Fig5 .The decay curve for free photoelectrons of ZnS(NaCl)图6 ZnS(NaCl)浅陷阱电子衰减曲线Fig6.The decay curve for shallow electron of ZnS(N

6、aC)图5(a)为样品2的自由光电子衰减曲线。将自由光电子数和时间关系作成半对数关系曲线,如图5(b)所示,可以看出导带光电子的衰减为指数衰减,自由光电子寿命为1576ns。图6(a)所示为样品2的浅陷阱电子的衰减曲线。将电子密度和时间关系作成半对数关系曲线,如图6(b)所示,从衰减对数曲线可以看出电子的衰减为指数衰减,寿命为2013ns。分析上述结果,可以看出,样品1的光电子寿命最低为312ns,说明其由于氧化作用小,形成的电子陷阱能级密度低;样品2的光电子寿命为1576ns,说明其由于氧化作用形成了大量的电子陷阱能级;样品3的光电子寿命最长为1914ns,是由于Cl-进入晶格形成了大量电子

7、陷阱能级。这些结果与热释光的研究结果相一致。同时比较材料2和材料3的光电子寿命,二者仅相差200ns,而材料2具有两个深度不同、密度有相对较大的能级,说明深能级对光电子瞬态过程影响很小。 413 制备不同电子陷阱能级分布的ZnS发光材料通过改变制备条件,可以在更宽的范围调整ZnS的电子陷阱能,制备出具有不同能级分布的ZnS材料,如图7、8所示。这些具有不同深度陷阱能级的材料为深入研究电子陷阱能级对电子运动的影响提供了跟广泛的素材,也为进一步合成实用化的长余辉发光材料提供了科学依据。图7 样品4的热释光曲线图8 样品6的热释光曲线图7是样品4、5的热释光曲线;图8是样品6的热释光曲线;其具体数据

8、如表1所示。可以看出,通过改变制备条件和杂质,获得了具有不同深度和密度的电子陷阱能级。表1 热释光峰温度和峰值强度样品编号添加量T1I1T2I2T3I34Eu(NO3)3+ZnS(杂质)-151144-6414725137.55-158144.5-6820117.756纯ZnS+NaCl-146109.5-59143.751878.5本节结论:在不同条件下制备的ZnS材料中,由于掺杂或氧化作用的差异,其内部形成的电子陷阱能级深度分布和密度不同,导致其光生电子的衰减寿命差异。在室温条件下,对光生电子寿命影响最大的是浅电子陷阱。当电子陷阱能级过深时,室温下电子在热扰动作用下很难脱离陷阱能级,因此其对瞬时光生电子寿命的影响很小。4133 材料的发光瞬态过程和和长余晖

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1