1、.11.(3分)绝对值大于2. 4小于7.1的负整数有.12.(3分)一根铁丝的长为5/46,剪下一部分围成一个长为a宽为6的长方形,则这根铁丝还剩下.13.(3分)若1/3 + (n-2) s=0,那么病的值为.14.(3分)如图是我市.某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差15.(3分)已知月=2x+3ax- 2x-l, B= - 1,且3月+6万的值与x无关,则a的值为.16.(3分)现定义运算“*”,对于任意有理数a, b,满足.如5*3 = 2X5-3 = 7,匕1=2-I a-2b (a(一表)(4)-32+(-12) X |-y|-64-
2、(-1)(5)( -2) 2X5- ( -2) =4(6)- 14- (1-0.5) X-tx 2-(-3)2319.(4 分)合并同类项:4a+36+2ab - 2a+46, -20.(4 分)先化简,再求值:2 (3-2(/67) -a-2.其中 a=l, b= - 3.21.(5分)2019年国庆节,全国从1日到7日放假七天,高速公路免费通行,各地景区游人如织.其中,某著名 景点,在9月30日的游客人数为0.9万人,接下来的七天中,每天的游客人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数).日期 10月1日10月2日10月3日10月4日10月5日10月6日10月7日人
3、数变 +3. 1 +1.78 - 0.58 - 0.8 - 1 - 1.6 - 1. 15化(万人)(1)10月3日的人数为 万人.(2)七天假期里,游客人数最多的是10月 日,达到 万人.游客人数最少的是10月 日,达到 万人.(3)请问此风景区在这八天内一共接待了多少游客?(4)如果你也打算在下一个国庆节出游此景点,对出行的日期有何建议?22.(4分)计算如图阴影部分面积:(1)用含有a, 6的代数式表示阴影面积;(2)当a=l, 6=2时,其阴影而积为多少?23.(5分)定义:(a, b)是关于a, b的多项式,如果b) =f(b, a),那么b)叫做“对称多项式”.例如,如果f(a,
4、b)=才+a+金厅,则f(b, a) =6+6升/,显然,所以/(a, 6) = f C b, a)是对 称多项式”.(1)b)=j-2a卅6;是“对称多项式”,试说明理由:(2)请写一个对称多项式,f (a, b) = (不多于四项);(3)如果 (a, 6)和 (b, a)均为“对称多项式”,那么 (a, b) + (a, b) 一定是“对称多项式”吗?如果一定,请说明理由,如果不一定,请举例说明.24. (5分)在求两位数的平方时,可以用“列竖式”的方法进行速算,求解过程如图1所示.图1 图2 图3(1)仿照图1,在图2中补全67的“竖式”:(2)仿照图1,用“列竖式”的方法计算一个两位
5、数的平方,部分过程如图3所示.若这个两位数的个位数字为必则这个两位数为 (用含a的代数式表示).25.(5分)阅读下面材料,回答问题距离能够产生美.唐代著名文学家韩愈曾赋诗:“天街小雨润如酥,草色遥看近却无.当代印度著名诗人泰戈尔在世界上最遥远的距离中写道:“世界上最遥远的距离不是瞬间便无处寻觅而是尚未相遇便注定无法相聚”距离是数学、天文学、物理学中的热门话题,唯有对宇宙距离进行测量,人类才能掌握世界尺度.已知点儿6在数轴上分别表示有理数a, b, A, 6两点之间的距离表示为月6.(1)当月,6两点中有一点在原点时,不妨设点月在原点,如图1, AB=OB= b - a b- a= a - b
6、.(2)当儿6两点都不在原点时,如图2,点4 5都在原点的右边,AB=OB- OA=b - a =b a= a- bt如图 3,点 4 5都在原点的左边,AB=OB- OA- b - a = - b- ( - a) a - b= a - b x如图 4,点 4 8 在原点的两边,AB= OA-OB= a| + |Z? =a+ ( - b) =a- b= a - b .综上,数轴上4 6两点的距离相=la-b .利用上述结论,回答以下三个问题:A (O) B 0 A Ba b 0 a b图1 图2B a O BO A I I I 口 Il I .b 4 0 b 0 a图3 图4(1)若数轴上表示
7、X和-2的两点之间的距离是4,则*=;(2)若代数式肝1 + x-21取最小值时,则x的取值范围是;(3)若未知数x, y满足(|x- 1 + x- 3 ) (Iy- 2 + y+1 ) =6,则代数式的最大值是,最小值是.参考答案一、选择题(本大题共8个小题,每小题2分,共16分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.)1.【分析】此题主要用正负数来表示具有意义相反的两种量:上升记为正,则下降就记为负,直接得出结论即可. 【解答】解:如果上升8C记作+8,那么-5表示下降5:故选:B.【点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和
8、它意义相 反的就为负.2.【分析】科学记数法的表示形式为aX 10的形式,其中1W a 1时,a是正数:当原数的绝 对值VI时,a是负数.【解答】解:55000=5.5X10C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为aXl(T的形式,其中1W a 10, a为整 数,表示时关键要正确确定a的值以及n的值.3.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这 个单项式的次数.【解答】解:根据单项式定义得:单项式-Eu的系数是-3,次数是32 2D.【点评】本题考查了单项式系数、次数的定义.确定单项式的系数和次数时,把一个单项
9、式分解成数字因数和字 母因式的积,是找准单项式的系数和次数的关键.4.【分析】根据相反数得到-(-1),根据乘方得意义得到(-1) =1, 根据绝对值得到-1 =1,然后根据相反数的定义分别进行判断.A, - ( -1) =1,所以月选项错误;5、 -1): = 1,所以5选项错误;C. |-1|=1,所以。选项错误;D、- 1= - 1, -1与1互为相反数,所以。选项正确.【点评】本题考查了相反数:a的相反数为-a.也考查了绝对值与有理数的乘方.5.【分析】结合选项可知:要考虑9是一个一位小数的近似数,有两种情况:“四舍”得到的9最大是9.4, “五入” 得到的9最小是8. 5,由此解答问
10、题即可.方法一:“四舍”得到的9最大是9.4, “五入”得到的9最小是8. 5,故在各选项中,最接近9厘 米的是8. 6厘米.方法二:V9-8. 6=0.4, 9. 6=9=0. 6, 9. 9-9=0. 9, 10-9 = 1,.差值最小的是8. 6,即8. 6健最接近9厘米.【点评】此题主要考查了数字常识,取一个数的近似数,有两种情况:“四舍”得到的近似数比原数小,“五入” 得到的近似数比原数大,根据题的要求灵活掌握解答方法.6.【分析】方程两边同时乘以2,再化出2/-4x求值.f-2x-3=02X (Y-2x-3) =02X (y-2jv) - 6 = 02.E - 4x=6【点评】本题
11、考查代数式求值,解题的关键是化出要求的23-4*.7.【分析】观察数轴,找出a、6、c、d四个数的大概范围,再逐一分析四个选项的正误,即可得出结论.根据数轴,-5VaV-4, -2b - 1, OVcVl,餐4,V- 5a -4, 0el,;.aVc,故月错误:V-2 - 1, 0故5错误;V - 5|d|,故。错误:Vl - b2, d=4,- b m - 3: a - 2=0, a=2;则 d= ( -3) 3=9.故答案为9.【点评】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.14.【分析】求出每天的最高气温与最低气温的差,再比较大小即可.由折线统计图可知,周一
12、的日温差= 8C+1C=9C:周二的日温差= 7+lC=8C:周三的日温 差=8C+1 = 9C:周四的日温差=9:周五的日温差=13 - 5c = 8:周六的日温差=15 - 7c=8; 周日的日温差=16 -5C = 11,这7天中最大的日温差是11C.11.【点评】本题考查的是有理数的大小比较,熟知有理数比较大小的法则是解答此题的关键.15.【分析】把月、6表示的值代入3月+65,合并同类项,由于结果的值与x无关,即含x的项的系数为0,得关于a的方程,求解即可.3加66=3 (2x+3ax - 2y - 1) +6 (-4+ax - 1)=64+9& - 6* - 3 - 6藜+6氐丫
13、- 6=(15a - 6) x - 9因为结果的值与x无关,所以 15a-6 = 0解得a=25【点评】本题考查了整式的加减.掌握合并同类项的法则是解决本题的关键.16.【分析】因为2-1,故2*(-1)按照8*6=2“-6计算:/3=5,则分*23与x3两种情况求解.2* ( - 1) =2X2 - ( - 1) =4+1 = 5.而若肿3=5,当 *23,则分冰3=2*-3 = 5, x=4:当 x3,这与 x3 矛盾,所以种情况舍去.即:若m3 = 5,则有理数x的值为45; 4.【点评】本题考查了有理数的混合运算,解题的关键是理解题目所给的定义中包含的运算及运算顺序.17.【分析】先在
14、数轴上表示出各个数,再根据有理数的大小比较法则比较即可. ; 门 * .J2) t T-5 -4-3 -2 -1 0 1 2 3 4 5-2V - blvo.5 - ( - 2) 4.【点评】本题考查了数轴,相反数和有理数的大小比较,能熟记有理数的大小比较法则的内容是解此题的关犍, 注意:在数轴上表示的数,右边的数总比左边的数大.18.【分析】(1)原式利用减法法则变形,计算即可求出值:(2)原式从左到右依次计算即可求出值;(3)原式利用除法法则变形,再利用乘法分配律计算即可求出值:(4)原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可求出值;(5)原式先计算乘方运算,再计算乘除
15、运算,最后算加减运算即可求出值:(6)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.(1)原式=-12-20-8-15= -55:(2)原式=81X国X邑9 9 16(3)原式=(2+-L) X ( -36) = -8+9-2= - 1;9 4 18(4)原式=-9 - 6+6= - 9:(5)原式=20+2=22:(6)原式=-14X-tX ( -7) = - 14+1=-工.2 3 6 6【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.19.【分析】根据合并同类项:系数相加字母部分不变,可得答案.+236 - 2W+43 -=(4/-2/)+ (3炉+4
16、广)+ (2a6-ab)= 2a+7+ab.【点评】本题考查了合并同类项,合并同类项系数相加字母部分不变.20.【分析】根据整式的加减混合运算法则把原式化简,代入计算即可.原式=2/肘2a疔-2a%+2 - / - 2当 a=l, 6= - 3 时,原式=1X ( - 3)二=9.【点评】本题考查的是整式的化简求值,掌握整式的加减混合运算法则是解题的关键.21,【分析】(1)由题意可知:0.9+3.l+L78-0.58=52万人:(2)分别求出每天的人数:4, 5. 78, 5.2, 4.4, 3.4, 1.8, 0.65,即可求解;(3)求出每天人数,再求和得:0.9+4+5.78+52+4
17、4+3. 4+L 8+0. 65=26.13万人;(4)最好在十一后几天出行,人数较少.(D由题意可知:0.9+3.1+1. 78 - 0.58 = 5.2万人,故答案5.2万.4, 5. 78, 5.2, 4.4, 3.4, 1.8, 0.65,由此可知人数最多的是2号,5. 78万人,人数最少的是7号,0.65万人,故答案为 2, 5. 78, 7, 0. 65:(3)0. 9+4+5. 78+5. 2+4. 4+3. 4+1. 8+0. 65=26. 13 万人,1/9.此风景区在这八天内一共接待了 26. 13万游客:【点评】本题考查正数与负数:理解题意,利用正数负数求出每天的人数是解
18、题的关键.22.【分析】(1)由三个矩形面积之和表示出阴影部分面积即可:(2)将a与6的值代入计算即可求出值.(1)根据题意得:43+2aH3凯(2)当 a=l, 6=2 时,原式=4+4+12=20.【点评】此题考查了整式的混合运算,以及代数式求值,熟练掌握运算法则是解本题的关键.23.【分析】(1)根据对称多项式的定义,把多项式中的a, 6互换,多项式不变就是,据此即可判断;(2)根据定义即可写出,答案不唯一;(3)根据两个多项式的和不一定是多项式即可判断.(1)V f (b, a) =f-2a人则/(a, b) =f (a, b),故f(a, b)=/-2a星是“对称多项式”:(2)(a
19、, b) =a+b,答案不唯一a+b,答案不唯一;(3)不一定是,原因:当 (a, b) =a+b, = - a - 6,都是对称多项式,而 (a, b) +f (a, b) =0,是单项式,不是多项式.【点评】本题考查了整式的运算,理解对称多项式的定义是关键.24.【分析】(1)观察图象可知,第一行从右向左分别为个位数和十位数字的平方,每个数的平方占两个空,平方 是一位数的前面的空用0填补,第二行从左边第2个空开始向右是这个两位数的两个数字的乘积的2倍,然后相 加即为这个两位数的平方,根据此规律求解即可:(2)设这个两位数的十位数字为6,根据图3,利用十位数字与个位数字的乘积的2倍的关系列出
20、方程用a表示 出b,然后写出即可.(1)67M48? r-3 ! 6 ! 4 : 9屋”士 4 ; g 9 |图2(2)设这个两位数的十位数字为6,由题意得,2a6=103,解得b=5,所以,这个两位数是10X5+a=旌50.a+50.【点评】本题是对数字变化规律的考查,仔细观察图形,观察出前两行的数与两位数的十位和个位上的数字的关 系是解题的关键.25.【分析】(1)根据题意得绝对值方程,求解即可;(2)若代数式/1|+ x-2|取最小值时,表示在数轴上找一点x,到-1和2的距离之和最小,据此可解;(3)分别得出|x- l| + |x-3|的最小值为2和|y-2 +!1的最小值为3,从而得出x和y的范围,则问题得解.(1)若数轴上表示x和-2的两点之间的距离是4,贝IJ |.什2| =4解得才=-6或x=2-6或2;(2)若代数式肝1 +|x-2|取最小值时,表示在数轴上找一点才,到-1和2的距离之和最小,显然这个点x在-1和2之间-1W*W2;(3)*/ (|xT; + |x-3 ) ( y - 2 +1 ) =6又I x-1 | + |x-3的最小值为2, y-2 +| yH的最小值为3代数式鼾2y的最大值是7,最小值是-17; - 1.【点评】本题考查了数轴上的点与点之间的距离及代数式的最值问题,明确数轴上的点之间的距离及绝对值的运 算法则,是解题的关犍.
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1