ImageVerifierCode 换一换
格式:DOCX , 页数:12 ,大小:51.11KB ,
资源ID:17931674      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/17931674.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(大数据环境集群环境搭建Word下载.docx)为本站会员(b****3)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

大数据环境集群环境搭建Word下载.docx

1、2、集群的最小环境就是三台。因为后面要搭建ZooKeeper、kafka等集群。4、在安装的时候,另外两台服务器的centos镜像文件必须重新拷贝一份,放在新的目录里,使用各自自己的镜像文件。5、服务器的硬盘文件也必须重新选择一个新的目录,以更好的区分。6、安装好之后,记得要在三台机器的/etc/hosts文件中,配置全三台机器的ip地址到hostname的映射,而不能只配置本机,这个很重要!7、在windows的hosts文件中也要配置全三台机器的ip地址到hostname的映射。配置集群ssh免密码登录1、首先在三台机器上配置对本机的ssh免密码登录生成本机的公钥,过程中不断敲回车即可,s

2、sh-keygen命令默认会将公钥放在/root/.ssh目录下ssh-keygen-t rsa将公钥复制为authorized_keys文件,此时使用ssh连接本机就不需要输入密码了cd /root/.sshcp id_rsa.pub authorized_keys2、接着配置三台机器互相之间的ssh免密码登录使用ssh-copy-id -i spark命令将本机的公钥拷贝到指定机器的authorized_keys文件中方便好用Hadoop 2.4.1集群搭建安装hadoop包1、使用hadoop-2.4.1.tar.gz,使用WinSCP上传到CentOS的/usr/local目录下。2、

3、将hadoop包进行解压缩:tar -zxvf hadoop-2.4.1.tar.gz3、对hadoop目录进行重命名:mv hadoop-2.4.1 hadoop4、配置hadoop相关环境变量vi .bashrc 或者 vi/etc/profileexport HADOOP_HOME=/usr/local/hadoopexport PATH=$HADOOP_HOME/bin:$HADOOP_HOME/sbinsource .bashrc修改hadoop相关的配置文件进入/usr/local/hadoop/etc/hadoop 目录下修改core-site.xmlname/namevalue

4、hdfsspark1:9000 /设置hdfs集群对外提供的目录/property修改hdfs-site.xml /设置hdfs的一些目录,放在/usr/local/data的目录下面/usr/local/data/namenode/usr/local/data/datanode/usr/local/data/tmpdfs.replication3 /设置副本数修改mapred-site.xml/mapreduce的框架设置为yarnyarn修改yarn-site.xmlspark1mapreduce_shuffle修改slaves文件spark1spark2spark3在另外两台机器上搭建h

5、adoop1、使用如上配置在另外两台机器上搭建hadoop,可以使用scp命令将spark1上面的hadoop安装包和.bashrc或者/etc/profile 配置文件都拷贝过去。scp -r hadoop rootspark1:/usr/local/scp -r hadoop rootspark2:scp -r /etc/profile rootspark1:/etc/scp -r /etc/profile rootspark2:2、要记得对.bashrc文件或者/etc/profile进行source,以让它生效。3、记得在spark2和spark3的/usr/local目录下创建dat

6、a目录。启动hdfs集群1、格式化namenode:在spark1上执行以下命令,hdfs namenode -format2、启动hdfs集群:start-dfs.sh3、验证启动是否成功:jps、50070端口查看是否启动成功spark1:namenode、datanode、secondarynamenodespark2:datanodespark3:启动yarn集群1、启动yarn集群:start-yarn.sh2、验证启动是否成功:jps、8088端口resourcemanager、nodemanagernodemanagerhive0.13搭建安装hive包1、将的apache-hi

7、ve-0.13.1-bin.tar.gz使用WinSCP上传到spark1的/usr/local目录下。2、解压缩hive安装包:tar -zxvf apache-hive-0.13.1-bin.tar.gz。3、重命名hive目录:mv apache-hive-0.13.1-bin hive4、配置hive相关的环境变量,下面以.bashrc文件操作vi .bashrcexport HIVE_HOME=/usr/local/hiveexport PATH=$HIVE_HOME/bin安装MySQL1、在spark1上安装mysql。2、使用yum安装mysql server。yum inst

8、all -y mysql-serverservice mysqld startchkconfig mysqld on3、使用yum安装mysql connectoryum install -y mysql-connector-java4、将mysql connector拷贝到hive的lib包中cp /usr/share/java/mysql-connector-java-.jar /usr/local/hive/lib5、在mysql上创建hive元数据库,并对hive进行授权createdatabaseifnotexists hive_metadata;grantallprivileges

9、on hive_metadata.* tohive% identified by;localhostspark1flush privileges; /刷新授权use hive_metadata;配置hive-site.xmlmv hive-default.xml.template hive-site.xmlvi hive-site.xmljdbc:mysqlspark1:3306/hive_metadata?createDatabaseIfNotExist=truehive/user/hive/warehouse配置hive-env.sh和hive-config.shmv hive-env.s

10、h.template hive-env.shvi /usr/local/hive/bin/hive-config.sh验证hive是否安装成功直接输入hive命令,可以进入hive命令行ZooKeeper 3.4.5集群搭建安装ZooKeeper包1、将zookeeper-3.4.5.tar.gz使用WinSCP拷贝到spark1的/usr/local目录下。2、对zookeeper-3.4.5.tar.gz进行解压缩:tar -zxvf zookeeper-3.4.5.tar.gz。3、对zookeeper目录进行重命名:mv zookeeper-3.4.5 zk。4、配置zookeeper

11、相关的环境变量vi .bashrc 或者 vi /etc/profileexport ZOOKEEPER_HOME=/usr/local/zkexport PATH=$ZOOKEEPER_HOME/bin配置zoo.cfg 在/usr/local/zk/conf目录下vi zoo.cfg修改:dataDir=/usr/local/zk/data新增:server.0=spark1:2888:3888server.1=spark2:server.2=spark3:设置zk节点标识cd zkmkdirdatacddatavi myid搭建zk集群1、在另外两个节点上按照上述步骤配置ZooKeepe

12、r,使用scp将zk和.bashrc拷贝到spark2和spark3上即可。scp -r zk rootslave1:2、唯一的区别是spark2和spark3的标识号分别设置为1和2。与myid 中的值修改为1 和2启动ZooKeeper集群1、分别在三台机器上执行:zkServer.sh start。2、检查ZooKeeper状态:zkServer.sh status。kafka_2.9.2-0.8.1集群搭建安装Scala1、将scala-2.11.4.tgz使用WinSCP拷贝到spark1的/usr/local目录下。2、对scala-2.11.4.tgz进行解压缩:tar -zxv

13、f scala-2.11.4.tgz。3、对scala目录进行重命名:mv scala-2.11.4 scala4、配置scala相关的环境变量export SCALA_HOME=/usr/local/scalaexport PATH=$SCALA_HOME/bin5、查看scala是否安装成功:scala -version6、按照上述步骤在spark2和spark3机器上都安装好scala。使用scp将scala和.bashrc拷贝到spark2和spark3上即可。安装Kafka包1、将kafka_2.9.2-0.8.1.tgz使用WinSCP拷贝到spark1的/usr/local目录下

14、。2、对kafka_2.9.2-0.8.1.tgz进行解压缩:tar -zxvf kafka_2.9.2-0.8.1.tgz。3、对kafka目录进行改名:mv kafka_2.9.2-0.8.1 kafka4、配置kafkavi /usr/local/kafka/config/server.propertiesbroker.id:依次增长的整数,0、1、2、3、4,集群中Broker的唯一idzookeeper.connect=:2181,:21815、安装slf4j将slf4j-1.7.6.zip上传到/usr/local目录下把slf4j中的slf4j-nop-1.7.6.jar复制到k

15、afka的libs目录下面搭建kafka集群1、按照上述步骤在spark2和spark3分别安装kafka。用scp把kafka拷贝到spark2和spark3行即可。2、唯一区别的,就是server.properties中的broker.id,要设置为1和2启动kafka集群1、在三台机器上分别执行以下命令:nohup bin/kafka-server-start.sh config/server.properties & 必须在kafka的主目录下执行 cd /kafka2、解决kafka Unrecognized VM option UseCompressedOops问题vi bin/k

16、afka-run-class.shif -z $KAFKA_JVM_PERFORMANCE_OPTS ; thenKAFKA_JVM_PERFORMANCE_OPTS=-server -XX:+UseCompressedOops -XX:+UseParNewGC -XX:+UseConcMarkSweepGC -XX:+CMSClassUnloadingEnabled -XX:+CMSScavengeBeforeRemark -XX:+DisableExplicitGC -Djava.awt.headless=truefi去掉-XX:+UseCompressedOops即可3、使用jps检查启

17、动是否成功测试kafka集群使用基本命令检查kafka是否搭建成功bin/kafka-topics.sh-zookeeper192.168.0.110:2181,192.168.0.111:2181,192.168.0.112:2181-topicTestTopic-replication-factor1-partitions1-create在spark1上执行bin/kafka-console-producer.sh-broker-list192.168.1.107:9092,192.168.1.108:9092,192.168.1.109:9092-topicTestTopic在spark

18、2上执行bin/kafka-console-consumer.sh-zookeeper192.168.1.107:2181,192.168.1.108:2181,192.168.1.109:2181-topicTestTopic-from-beginningSpark 1.3.0集群搭建安装spark包1、将spark-1.3.0-bin-hadoop2.4.tgz使用WinSCP上传到/usr/local目录下。2、解压缩spark包:tar zxvf spark-1.3.0-bin-hadoop2.4.tgz。3、更改spark目录名:mv spark-1.3.0-bin-hadoop2.

19、4 spark4、设置spark环境变量export SPARK_HOME=/usr/local/sparkexport PATH=$SPARK_HOME/binexport CLASSPATH=.:$CLASSPATH:$JAVA_HOME/lib:$JAVA_HOME/jre/lib修改spark-env.sh文件1、cd /usr/local/spark/conf2、cp spark-env.sh.template spark-env.sh3、vi spark-env.shexport SPARK_MASTER_IP=export SPARK_WORKER_MEMORY=1gexport

20、 HADOOP_CONF_DIR=/usr/local/hadoop/etc/hadoop安装spark集群在另外两个节点进行一模一样的配置,使用scp将spark和.bashrc拷贝到spark2和spark3即可。启动spark集群1、在spark目录下的sbin目录2、执行 ./start-all.sh3、使用jsp和8080端口可以检查集群是否启动成功4、进入spark-shell查看是否正常Spark1.3.0升级1.5安装spark包1、停止Spark 1.3.0集群:SPARK_HOME/sbin/stop-all.sh2、将spark-1.5.1-bin-hadoop2.4.t

21、gz使用WinSCP上传到/usr/local目录下。3、解压缩spark包:tar zxvf spark-1.5.1-bin-hadoop2.4.tgz。4、修改spark环境变量export SPARK_HOME=/usr/local/spark-1.5.1-bin-hadoop2.4export SPARK_MASTER_IP=192.168.1.107scp -r spark-1.5.1-bin-hadoop2.4 rootspark1:2、执行./start-all.shhadoop fs -put spark.txt /val lines = sc.textFileval word

22、s = lines.flatMap line.split val pairs = words.map val counts = pairs.reduceByKeycounts.foreach println flume-ng-1.5.0-cdh5.3.6安装安装flume1、将flume-ng-1.5.0-cdh5.3.6.tar.gz使用WinSCP拷贝到sparkproject1的/usr/local目录下。3、对flume目录进行重命名:mv apache-flume-1.5.0-cdh5.3.6-bin flumevi /.bashrcexport FLUME_HOME=/usr/local/flumeexport FLUME_CONF_DIR=$FLUME_HOME/confexport PATH=$FLUME_HOME/binsource /.bashrc修改flume配置文件vi /usr/local/flume/conf/flume-conf.propertiesagent1表示代理名称agent1.sources=source1agent1.sinks=sink1agent1.channels=channel1配置source1agent1.sources.source1.type=spooldiragent1.sources.source1.sp

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1