ImageVerifierCode 换一换
格式:DOCX , 页数:19 ,大小:86.11KB ,
资源ID:17880860      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/17880860.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(无机材料科学基础课程授课教案第1章Word文件下载.docx)为本站会员(b****3)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

无机材料科学基础课程授课教案第1章Word文件下载.docx

1、 根据某一套等同点为基准所取晶胞的形状和该套等同点在晶胞中的位置可以判断该套等同点构成的空间格子类型,共有十四种空间格子类型,通常称为十四种布拉维空间格子(布拉维空间点阵)。晶胞种类等同点在晶胞的位置立方晶胞原始式体心式面心式六方晶胞底心式三方晶胞四方晶胞斜方晶胞单斜晶胞三斜晶胞如: NaCl晶体是由一套Na+离子立方面心格子和一套Cl-离子立方面心格子穿插而成。 CsCl晶体是由一套Cl-离子立方原始格子和一套Cs+离子立方原始格子穿插而成。立方ZnS(闪锌矿)晶体是由一套S2-离子立方面心格子和一套Zn2+离子立方面心格子穿插而成。CaF2(萤石)晶体是由一套Ca2+离子立方面心格子和两套

2、F-离子立方面心格子穿插而成。TiO2(金红石)晶体是由两套Ti4+离子四方原始格子和四套O2-离子四方原始格子穿插而成。第二节 晶体化学基础一、晶体中键的形式:1. 典型键型化学键:原子或离子结合成为分子或晶体时,相邻原子或离子间的强烈的吸引作用称为化学键。分子键:分子间较弱的相互作用力。 电负性(X)可衡量电子转移的情况,因而可用来判断化学键的键型。 原子的X越大,越易得到电子,X 大于2,呈非金属性; 原子的X越小,越易失去电子,X小于2,呈金属性。化学键的类型: 离子键:凡是X值相差大的不同种原子作用形成离子键。X值小的原子易失电子形成正离子,X值大的原子易得电子形成负离子。碱土金属与

3、氧原子结合。离子键无饱和性和方向性。 共价键:凡是X值较大的同种或不同种原子组成共价键。共价键有饱和性和方向性。 金属键:凡是X值都较小的同种或不同种原子组成金属键,被给出的电子形成自由电子气,金属离子浸没其中。金属键无饱和性和方向性。分子键的类型: 范德华键:分子间由于色散、诱导、取向作用而产生的吸引力的总和。 氢键:XHY,可将其归入分子键。氢键键键力 范德华键键力 一般的情况下各种键的强度顺序如下: 共价键最强,离子键很强,金属键较强,三种化学键的键力远大于分子键,分子键中氢键的键力大于范德华键。2.键型的过渡性 凡是X值有相当差异、但差异并不过大的原子之间形成离子键和共价键之间的过渡键

4、型。Si-O键(共价键和离子键成份各占50%)。 依据鲍林公式计算过渡键型中离子键占的百分数P:P=1-exp-1/4(xA-xB)2二 离子半径:对于独立存在的离子,它的离子半径是不确定的,但在离子晶体中,设离子为点电荷 ,根据库仑定律,正、负离子之间的吸引力:F(q1q2)/r2随着离子的相互靠近,电子云之间的斥力出现并迅速增大。当引力=斥力时处于平衡,平衡间距r=r0。r0为正离子中心到负离子中心的距离,即正、负离子都可以近似看成球形,各有一个作用圈半径,平衡间距就是相邻的正、负离子相互接触时半径之和。对于存在于离子晶体中的离子,它有确定的离子半径。 r0=r+ r-三、 球体的堆积方式

5、:1. 球体的最紧密堆积原理假设球体是刚性球,堆积密度越大,堆积体的内能越小,结构越稳定。球体的堆积倾向于最紧密方式堆积。2. 等径球体的堆积方式: (1)最紧密堆积六方最紧密堆积:ABAB(ACAC) 每两层重复一次,其球体在空间的分布与六方格子相对应,堆积体中有两套六方底心格子。其密排面/(0001)立方最紧密堆积:ABCABC(ACBACB) 每三层重复一次,球体分布方式与立方面心格子相对应,堆积体中有一套立方面心格子。其密排面/(111) 除上述这两种常见的最紧密堆积方式,最紧密堆积也可能出现ABACABAC,每四层重复一次,或ABABCABABC,每五层重复一次,等等。 密堆率(堆积

6、系数):晶胞中含有的球体体积与晶胞体积之比。 最紧密堆积密堆率都是74.05%,空隙率25.95%。 最紧密堆积体中是有空隙的,空隙类型有:四面体空隙:处于四个球体包围之中的空隙,四个球体中心连线形成一个四面体。八面体空隙:处于六个球体包围之中的空隙,六个球体中心连线形成一个八面体。 空隙半径(空隙中内切球半径):八面体四面体 有n个球体作最紧密堆积:每个球周围有四面体空隙8个,每个四面体空隙为4个球共有,每个球占有四面体空隙数8*1/4=2每个球周围有八面体空隙6个,每个八面体空隙为6个球共有,每个球占有八面体空隙数6*6/1=1 n个球体作最紧密堆积的堆积体中,有2 n个四面体空隙,有n个

7、八面体空隙。(2)简单立方堆积简单立方堆积不是最紧密堆积。球体分布方式与立方原始格子相对应,密堆率为52%。堆积体中只形成立方体空隙(8个球包围,其球心连线形成一个立方体)。同理可知,n个球做简单立方堆积有n个立方体空隙。(3)不等径球体的堆积 不等径球体的堆积可看成较大的球体作等径球体的最紧密堆积,较小的球填充于堆积体的空隙中。在离子晶体中,负离子一般较大,负离子通常作最紧密堆积,正离子较小,填充于堆积体的四面体空隙或八面体空隙中,如果正离子太大,八面体空隙也填不下,则要求负离子改变堆积方式,作简单立方堆积,产生较大的立方体空隙,正离子填充于堆积体的立方体空隙中。用这种方式描述离子晶体结构,

8、虽不严密但有助于我们想象。 如:NaCl :n个Cl-离子做立方最紧密堆积,产生n 个八面体空隙,Na+离子填充全部八面体空隙。 CsCl:Cl-做简单立方堆积,Cs+离子填充于全部的立方体空隙当中。 ZnS:S2-做立方最紧密堆积,Zn2+填充一半的四面体空隙。CaF2:F-做简单立方堆积,Ca2+填充一半的立方体空隙。不等径球体堆积达到的密堆率可以大于等径球体的密堆率。四、配位数(CN):1.CN定义 在离子晶体中,每个离子都被与其电荷相反的异名离子相包围,则异名离子的数量就是这个离子的配位数。NaCl,Na+周围有6个Cl-,则Na+的CN=62.配位多面体 配位数决定了配位多面体的形态

9、。配位数:8配位多面体:立方体;4配位多面体: 假设离子是刚性球,正离子的配位数由R+/R-决定:3. 离子的极化对晶体结构的影响 在外电场作用下离子被极化,产生偶极矩。离子晶体中每个离子都有双重能力,既有极化别的离子的能力,又有被别的离子极化的能力。 极化率(极化系数):离子被极化的难易程度(越大,变形程度越大;越小,变形程度越小) 极化力:离子极化其它离子的能力,主极化。 一般地,只考虑正离子对负离子的极化作用,而对于最外层电子是18、18+2型正离子,除考虑正离子对负离子的极化作用外,还必须考虑负离子对正离子的极化,因为最外层电子为18、18+2型离子不仅大。而且也大,总的极化作用大大加

10、强,晶体结构类型可能因此而改变。 例:离子极化对卤化银晶体结构的影响 AgCl AgBr AgIR+/R-0.635 0.587 0.523实际配位数6 6 4(理论为6)理论结构类型NaCl NaClNaC l实际结构类型立方ZnS 五、 决定离子晶体结构的因素结晶化学定律 离子晶体结构取决其组成质点的数量关系、大小关系和极化性能。 数量关系:正负离子的比例,如:NaCl中为1:1(两套立方面心格子),CaF2中为1:2(三套立方面心格子) 大小关系:NaCl中,R+/R-=0.95/1.81=0.52,CN=6。CsCl中,R+/R-=1.69/1.81=0.93,CN=8。极化性能:Ag

11、Cl,CN=6;AgI,CN=4。六、晶格能1.定义: 把1mol离子晶体中各离子拆散至气态时所需要的能量。 对于二元离子晶体 U=W1W2e2N0A(1-1/n)/r0其中:W1W2正负离子的电价, e电子电荷,r0平衡间距,N0阿佛加德罗常数,A马德伦常数, n波恩指数。2.晶格能的意义: 对于二元晶体,晶格类型相同,且离子间的极化作用不太强烈时,由晶格能大小可比较晶体有关的物理性质MgO、CaO、SrO、BaO二元晶体,结构类型为NaCl型, 故:晶格能UMgOU CaO U SrO UBaO故熔点 MgOCaOSrOBaO 硬度 MgO在利用晶格能比较晶体物理性质时必须注意极化的影响,

12、如ZrO2、CeO2、ThO2均为CaF2型二元晶体,且RZrRCeU CeO2U ThO2实际熔点为:271027503050,熔点ZrO2最低而ThO2最高。七 从多面体堆积角度认识晶体鲍林规则1 第一规则:关于组成负离子多面体的规则 在每个正离子周围都形成一个负离子多面体,正负离子间距取决于它们的半径之和,正离子的配位数取决于正负离子半径之比。2 第二规则:电价规则 在一个稳定的离子化合物结构中,每一负离子的电价等于或近似等于从邻近的正离子至该负离子各静电强度的总和。 W-=Si(偏差不超过1/4价)Si静电键强度(中心正离子分配给每个负离子的电价分数)(1)对于二元晶体可推断其结构(已

13、知结构稳定)R+/R-=0.95/1.81=0.52,形成NaCl6八面体,Si=1/6W-=1=Si=1/6*i 推出i=6即:每个Cl-周围有6个Na+,或每个Cl-是6个NaCl6八面体的共用顶点。(2)判断结构是否稳定(已知结构)镁橄榄石(Mg2SiO4)已知结构中,一个SiO4四面体和三个MgO6八面体共用一个O顶点Si=1*4/4+3*2/6=2= W- 故结构稳定3第三规则:关于负离子配位多面体共用顶点规则 在一个配位结构中,两个负离子多面体以共棱方式特别是共面方式存在时,结构稳定性较低,对于电价高而配位数小的正离子此效应尤为显著。阴离子多面体存在方式不连共顶共棱共面阴离子多面体

14、共用顶点123随着顶点共用数增加,导致两个正离子中心距减小,如在八面体中以点、棱、面相连时,两中心正离子之间的距离以1:0.71:0.58的比例减小,而四面体以点、棱、面相连时,两中心正离子之间的距离以1:0.58:0.33的比例减小。正离子间距减小,排斥力增大,不稳定程度增大。4、第四规则:不同种类配位多面体之间的连接规则 在含有不同种类正离子的晶体中,电价高而配位数小的正离子的配位多面体趋向于相互不共用顶点。该规则的物理基础与第三规则相同。5、第五规则:节约规则八、典型无机化合物的结构 描述晶体结构的方法: 从几何结晶学角度空间格子 从球体堆积角度负离子做堆积,正离子填充空隙用鲍林规则分析

15、多面体堆积取晶胞,晶胞中质点的具体位置1、AX型(1)NaCl型方法:一套Cl-和一套Na+的立方面心格子穿插而成。Cl-做立方最紧密堆积,Na+填充全部的八面体空隙。第一规则:RNa+/RCl-=0.52,形成NaCl6八面体。第二规则:已知结构稳定,W-=1=Si 在NaCl6八面体中,Si=1/6 1=1/6*i 推出:i=6每个Cl-是6个NaCl6八面体的共用顶点。第三规则:最高连接方式是共棱连接,结构稳定。Cl-为基准取晶胞,立方晶胞: Cl- (0,0,0),(1/2,0,1/2),(0,1/2,1/2),(1/2,1/2,0) Na+ (1/2,1/2,1/2) NaCl晶胞中

16、含有的式量分子数:Na+:体心,各边心 1+1/4*12=4Cl- :各角顶,各面心 1/8*8+1/2*6=4每个晶胞中含有4个式量分子。(“分子”) 碱土金属氧化物MgO、CaO、SrO、BaO具有NaCl型晶体结构。(其中的Mg2+、Ca2+、Cs2+、Ba2+相当于NaCl中的Na+离子,而O离子相当于Cl-离子)(2)CsCl型由一套Cl-和一套Cs+离子的立方原始格子穿插而成。Cl-做简单立方堆积,Cs+填充全部立方体空隙。RCs+/RCl-=0.167/0.181=0.93,形成CsCl8立方体W-=1=Si 在CsCl8立方体中,Si=1/8 1=1/8*i 推出:i=8每个C

17、l-是8个CsCl8立方体的共用顶点。立方晶胞:Cl-:(0,0,0) Cs+:(1/2,1/2,1/2) 晶胞中含有的式量分子数:体心 1 Cl-:角顶 1/8*8=1 即:每个晶胞中含有1个CsCl式量分子。属于该类型结构的晶体有CsBr、CsI、TlCl、NH4Cl等(3)闪锌矿型(立方ZnS)由一套S2-和一套Zn2+的立方面心格子穿插而成。S2-做立方最紧密堆积,Zn2+填充1/2的四面体空隙。R Zn2+/R S2-=0.44,理论上为ZnO6八面体,实际为ZnO4四面体。 W-=2=Si Si=2/4=1/2 1/2*i=2 推出:i=4每个S2-是4 个ZnO4四面体的共用顶点

18、。最高连接方式为共顶连接。 立方晶胞中S2-:(0,0,0),(0,1/2,1/2),(1/2,0,1/2),(1/2,1/2,0)Zn2+:(1/4,1/4,3/4),(1/4,3/4,1/4),(3/4,1/4,1/4),(3/4,3/4,3/4)晶胞中含有的式量分子数: S2-:各1/8小立方体的体心 8*1/2=4每个晶胞含有4个ZnS“分子“。-SiC、GaAs、AlP、InSb等具有该类型结构。(4)纤锌矿型(六方ZnS) 由2套S2-和2套Zn2+的六方底心格子穿插而成。2. AX2型(1)CaF2(萤石型)由一套Ca2+和2套F-的立方面心格子穿插而成。R Ca2+/R F-=

19、0.112/0.131=0.85,形成CaF8立方体 W-=1=Si Si=2/8=1/4 1/4*i=1 推出:4个CaF8立方体共用1 个顶点最高连接方式为共棱连接。Ca2+:(0,0,0),(1/2,1/2,0),(1/2,0,1/2),(0,1/2,1/2) F-:(1/4,1/4,1/4),(3/4,3/4,1/4),(3/4,1/4,3/4),(1/4,3/4,3/4),(3/4,3/4,3/4),(1/4,1/4,3/4),(1/4,3/4,1/4),(3/4,1/4,1/4)各角顶、各面心 1/8*8+6*1/2=4F-:各1/8小立方体体心 8每个晶胞中含有4个CaF2式量分

20、子。 该类型结构晶体有ZrO2、UO2、ThO2等 反萤石结构:与萤石结构相反,正、负离子位颠倒的结构,阴离子做立方最紧密堆积,阳离子填充全部的四面体空隙。晶体举例:碱金属氧化物Li2O、Na2O、K2O(2)TiO2(金红石型)由2套Ti4+和4套O2-的四方原始格子穿插而成。O2-做六方最紧密堆积,Ti4+填充一半的八面体空隙。R Ti4+/R O2-=0.06/0.125=0.46,形成TiO6八面体 W-=2=Si Si=4/6=2/3 2/3*i=2 推出:i=3每个O2-是三个TiO6八面体的共用顶点。四方晶胞:Ti4+:各角顶、体心 1/8*8+1=2O2-:2个1/8立方体体心

21、、4个小立方体底心 2+4*1/2=4每个晶体中含有2个TiO2式量分子。GeO2、SnO2、PbO2、MnO2等。 TiO2变体:金红石型:八面体之间共用棱边数为2条板钛矿型:八面体之间共用棱边数为3条锐钛矿型:八面体之间共用棱边数为4条(3)CdI2型 I-做近似的六方最紧密堆积,Cd2+填充一半的八面体空隙。填充方式为I-形成的层间一层填满一层不填,形成层状结构晶体。两片I-离子夹一片Cd2+离子,电价饱和,层之间靠范德华力连接。R Cd2+/R I-=0.095/0.22=0.44,形成CdI6八面体 W-=1=Si Si=2/6=1/3 1/3*i=1 推出:每个I-是三个CdI6八

22、面体的共用顶点。Mg(OH)2、Ca(OH) 23. A2X3型:-Al2O3(刚玉型)三方晶系 O2-做近似六方最紧密堆积,Al3+填充2/3的八面体空隙。晶胞中存在6个八面体空隙,Al3+填充4个,故不可避免出现八面体共面现象,但-Al2O3是稳定的,因为Al-O键很强, Al3+配位数高,比4配位时斥力小的多。R Al3+/R O2-= 0.057/0.13 5 = 0.40,形成AlO6八面体 W-=2=Si Si=3/6=1/2 1/2*i=2 推出:每个O2-是4个AlO6八面体的共用顶点。-Fe2O3、Cr2O3、Ti2O3、V2O3等。4、ABO3型:(1) CaTiO3(钙钛

23、矿型) Ca2+:个角顶 O2-:个面心 Ti4+:体心TiO6 Ti4+:个角顶 Ca2+:体心 O2-:各边边心CaO12可视做Ca2+、 O2-(较大的Ca2+)做立方最紧密堆积(2)钛铁矿:FeTiO3(A离子较小) O2-做立方最紧密堆积,Fe2+、Ti4+共同填充八面体空隙。(3)络阴离子团的ABO3:CaCO3(B离子较小)5、AB2O4型:MgAl2O4(镁铝尖晶石) O2-做立方最紧密堆积,Al3+填充一半的八面体空隙,Mg2+填充1/8的四面体空隙。将一个晶胞分为8个小立方体(4个为A,4个为B)其中A:各角顶、各面心 Al3+:6条边边心 Mg2+:2个小立方体体心B:另

24、6条边边心和体心 无Mg2+* 正尖晶石:二价离子填充四面体空隙,三价离子填充八面体空隙。 反尖晶石:一半三价离子填充四面体空隙,另一半三价离子和二价离子填充八面体空隙。第三节、硅酸盐晶体结构 硅酸盐晶体的写法:氧化物法:把构成硅酸盐的演化物按价数依次写出钾长石: K2OAl2O36SiO2 简式:KAS6钠长石: Na2ONAS6镁橄榄石:2MgOSiO2 简式:M2S无机络盐法:按络阴离子来写K2Al2Si6O16KAlSi3O8一、硅酸盐晶体结构的特点1、每个Si4+存在于4个O2-为顶点的四面体中心,构成SiO4四面体,它是硅酸盐晶体结构的基础,叫硅氧骨干。2、硅氧四面体的顶点的O2-

25、最多为两个SiO4四面体所共用。3、两个临近的SiO4四面体之间只以共顶形式连接。4、当O/Si4时,SiO4四面体趋向于不共用任何顶点。5、每种晶体中只有一种硅氧骨干。6、若Al3+为四配位,AlO4四面体和SiO4四面体共同组成铝硅氧骨干;若Al3+为六配位,则Al3+位于硅氧骨干之外。* 利用鲍林规则来分析:1.根据鲍林第一规则,硅酸盐晶体中存在SiO4四面体,键型为共价键与离子键的过渡型键。 2. 根据鲍林第二规则,Si = 4/4 = 1 Wo = 2 = 1*i i = 2,即SiO4顶角的O2-最多能为两个SiO4所公用。3.根据鲍林第三规则,两个SiO4之间最多只能共用一个顶点。4.根据鲍林第四规则,当O/Si4时,两个SiO4倾向于互不相连。5. 根据鲍林第五规则,晶体中只能有一种硅氧骨干类型。* 硅酸盐晶体中Al3+的存在方式AlO6八面体:Al3+只能在硅氧骨干外,无法取代SiO4AlO4四面体:Al3+可以取代Si4+,形成硅铝氧骨干,称为铝硅酸盐。二.硅酸盐晶体结构的分类1.

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1