1、正电荷受力与电场方向相同,负电荷受力与电场方向相反做功情况任何情况下都不做功可能做正功,可能做负功,也可能不做功题点全练1(2019兴化模拟)如图所示为一螺距较大、有弹性的通电螺线管的磁场截面分布图,虚线为螺线管的中轴线(与某一磁感线重合)。ab为用绝缘细线悬挂的位于螺线管的正上方的通电直导线,其电流方向由a到b,电流很小,不影响螺线管磁场。下列说法正确的是()AP、Q两点的磁感应强度相同B直导线ab通电后,a端垂直纸面向外转动C断开螺线管的电源后,螺线管有沿水平方向向内收缩的趋势D将不计重力的电子沿中轴线射入螺线管,电子将做匀速直线运动解析:选DP、Q两点的磁感应强度大小相同,方向不相同,选
2、项A错误;直导线ab通电后,由左手定则可知,a端受安培力向里,则a端垂直纸面向里转动,选项B错误;螺线管通电时,各匝之间为同向电流,相互吸引,则断开螺线管的电源后,螺线管有沿水平方向向外扩张的趋势,选项C错误;长螺线管内部的磁场可认为是匀强磁场,将不计重力的电子沿中轴线射入螺线管,电子运动的方向与磁感线平行,不受洛伦兹力作用,则电子将做匀速直线运动,选项D正确。2.如图所示,如果在电子射线管上方平行于管轴放置一根载流导线,电子以恒定的速率从左端进入射线管,则下列说法中正确的是()A当电流方向如图所示时,电子沿直线向右运动B当电流方向如图所示时,电子射线将向上偏转C当电流方向与图示方向相反时,电
3、子射线将向上偏转D当电流方向与图示方向相反时,电子射线将向下偏转选C电流方向如题图所示时,由安培定则可知,导线下方的磁场垂直于纸面向里,由左手定则可知,电子受到的洛伦兹力方向向下,电子射线将向下偏转,故A、B错误。当电流方向与题图所示方向相反时,由安培定则可知,导线下方的磁场方向垂直于纸面向外,由左手定则可知,电子受到的洛伦兹力方向向上,电子射线将向上偏转,故C正确,D错误。突破点(二)带电粒子在匀强磁场中的运动1圆心的确定(1)已知入射方向和出射方向时,可通过入射点和出射点做垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心,如图甲所示,图中P为入射点,M为出射点。(2)已知入
4、射方向和入射点、出射点的位置时,可以通过入射点做入射方向的垂线,连接入射点和出射点,做其中垂线,这两条垂线的交点就是圆弧轨道的圆心。如图乙所示,P为入射点,M为出射点。2带电粒子在不同边界磁场中的运动(1)直线边界(进出磁场具有对称性,如图所示)。(2)平行边界(存在临界条件,如图所示)。(3)圆形边界(沿径向射入必沿径向射出,如图所示)。3解题常用知识(1)几何知识:根据已知长度、角度,计算粒子的运动半径,或者根据粒子的运动半径计算未知长度、角度时,常用到几何知识。例如,三角函数、勾股定理、偏向角与圆心角的关系(2)半径公式、周期公式:应用公式R、T,可根据q、B、m、v计算粒子的半径、周期
5、,也可根据粒子的半径或周期计算磁感应强度,粒子的电荷量、质量。(3)运动时间计算式tT:计算粒子的运动时间或已知粒子的运动时间计算圆心角或周期时,常用到tT。典例(2016全国卷)一圆筒处于磁感应强度大小为B的匀强磁场中,磁场方向与筒的轴平行,筒的横截面如图所示。图中直径MN的两端分别开有小孔,筒绕其中心轴以角速度顺时针转动。在该截面内,一带电粒子从小孔M射入筒内,射入时的运动方向与MN成30角。当筒转过90时,该粒子恰好从小孔N飞出圆筒。不计重力。若粒子在筒内未与筒壁发生碰撞,则带电粒子的比荷为()A. B.C. D.审题指导第一步:抓关键点关键点获取信息粒子射入时的运动方向与MN成30角粒
6、子射出磁场时与半径方向也应成30筒转过90所用时间为圆筒运动周期的第二步:找突破口(1)求粒子运动的圆心角画轨迹,由几何关系求解。(2)求粒子运动周期根据粒子运动时间与筒相等求解。(3)求比荷可根据粒子的周期公式求解。解析如图所示,粒子在磁场中做匀速圆周运动,圆弧所对应的圆心角由几何知识知为30,粒子在磁场中运动时间与圆筒转动时间相等,则,即,选项A正确。答案A方法规律带电粒子在匀强磁场中做匀速圆周运动的解题三步法集训冲关1(2018海南高考)如图,圆心为O、半径为r的圆形区域外存在匀强磁场,磁场方向垂直于纸面向外,磁感应强度大小为B。P是圆外一点,OP3r。一质量为m、电荷量为q(q0)的粒
7、子从P点在纸面内垂直于OP射出。已知粒子运动轨迹经过圆心O,不计重力。求:(1)粒子在磁场中做圆周运动的半径;(2)粒子第一次在圆形区域内运动所用的时间。(1)根据题意,画出粒子运动轨迹图,如图所示。设粒子在磁场中运动半径为R,由几何关系得:R3r解得:R。(2)设进入磁场时速度的大小为v,由洛伦兹力公式和牛顿第二定律有qvBm进入圆形区域,带电粒子做匀速直线运动,则2rvt联立解得t。答案:(1)(2)(2017全国卷)如图,空间存在方向垂直于纸面(xOy平面)向里的磁场。在x0区域,磁感应强度的大小为B0;x1)。0)的带电粒子以速度v0从坐标原点O沿x轴正向射入磁场,此时开始计时,当粒子
8、的速度方向再次沿x轴正向时,求:(不计重力)(1)粒子运动的时间;(2)粒子与O点间的距离。(1)在匀强磁场中,带电粒子做圆周运动。设在x0区域,圆周半径为R1;在x0区域,圆周半径为R2。由洛伦兹力公式及牛顿定律得qB0v0m qB0v0m 粒子速度方向转过180时,所需时间t1为t1 粒子再转过180时,所需时间t2为t2 联立式得,所求时间为t0t1t21。 (2)由几何关系及式得,所求距离为d02(R1R2)。 突破点(三)带电粒子在匀强磁场中的多解问题带电粒子在洛伦兹力作用下做匀速圆周运动,由于多种因素的影响,使问题形成多解。多解形成原因一般包含4个方面:(一)带电粒子电性不确定形成
9、多解受洛伦兹力作用的带电粒子,可能带正电荷,也可能带负电荷,在相同的初速度的条件下,正、负粒子在磁场中运动轨迹不同,导致形成多解。例1如图所示,宽度为d的有界匀强磁场,磁感应强度为B,MM和NN是它的两条边界。现有质量为m,电荷量为q的带电粒子沿图示方向垂直磁场射入。要使粒子不能从边界NN射出,则粒子入射速率v的最大值可能是多少。解析题目中只给出粒子“电荷量为q”,未说明是带哪种电荷。若q为正电荷,轨迹是如图所示的上方与NN相切的圆弧,轨道半径:R又dR解得v(2)。若q为负电荷,轨迹如图所示的下方与NN相切的圆弧,则有:RdR,解得v(2)。答案(2)(q为正电荷)或(2)(q为负电荷)(二
10、)磁场方向不确定形成多解有些题目只告诉了磁感应强度的大小,而未具体指出磁感应强度方向,此时必须要考虑磁感应强度方向不确定而形成的多解。例2多选(2018盐城模拟)一质量为m,电荷量为q的负电荷在磁感应强度为B的匀强磁场中绕固定的正电荷沿固定的光滑轨道做匀速圆周运动,若磁场方向垂直于它的运动平面,且作用在负电荷的电场力恰好是磁场力的三倍,则负电荷做圆周运动的角速度可能是()A. B.解析依题中条件“磁场方向垂直于它的运动平面”,磁场方向有两种可能,且这两种可能方向相反。在方向相反的两个匀强磁场中,由左手定则可知负电荷所受的洛伦兹力的方向也是相反的。当负电荷所受的洛伦兹力与电场力方向相同时,根据牛
11、顿第二定律可知4Bqvm,得v,此种情况下,负电荷运动的角速度为;当负电荷所受的洛伦兹力与电场力方向相反时,有2Bqvm,v,此种情况下,负电荷运动的角速度为,应选AC。答案AC(三)带电粒子速度不确定形成多解有些题目只告诉了带电粒子的电性,但未具体指出速度的大小或方向,此时必须要考虑由于速度的不确定而形成的多解。例3如图所示圆形区域内,有垂直于纸面方向的匀强磁场,一束质量和电荷量都相同的带电粒子,以不同的速率,沿着相同的方向,对准圆心O射入匀强磁场,又都从该磁场中射出。若带电粒子在磁场中只受磁场力的作用,则在磁场中运动时间越长的带电粒子()A速率一定越大B速率一定越小C在磁场中通过的路程越长
12、D在磁场中的周期一定越大解析由周期公式得:T,由于带电粒子的q、m均相同,所以周期T相同,故D错误。根据tT可知,在磁场中运动时间越长的带电粒子,圆心角越大,半径越小,由r知速率一定越小,B正确,A错误。通过的路程即圆弧的长度lr,与半径r和圆心角有关,故C错误。答案B(四)带电粒子运动的周期性形成多解空间中存在周期性变化的磁场,带电粒子在空间运动时,运动往往具有周期性,因而形成多解。例4(2018如皋模拟)如图甲所示,M、N为竖直放置彼此平行的两块平板,板间距离为d,两板中央各有一个小孔O、O正对,在两板间有垂直于纸面方向的磁场,磁感应强度随时间的变化如图乙所示,设垂直纸面向里的磁场方向为正
13、方向。有一群正离子在t0时垂直于M板从小孔O射入磁场。已知正离子质量为m、带电荷量为q,正离子在磁场中做匀速圆周运动的周期与磁感应强度变化的周期都为T0,不考虑由于磁场变化而产生的电场的影响。(1)磁感应强度B0的大小;(2)要使正离子从O孔垂直于N板射出磁场,正离子射入磁场时的速度v0的可能值。思路点拨(1)求解磁感应强度B0的大小时要充分利用“正离子在磁场中做匀速圆周运动的周期为T0”这个条件。(2)正离子的运动周期与磁场的变化周期相同,离子在两板间的运动具有可重复性,求解第(2)问时可以先画出离子经一个周期飞出磁场的运动轨迹,继而推广到多个周期的情况。解析(1)正离子射入磁场,由洛伦兹力
14、提供向心力,即qv0B0,做匀速圆周运动的周期T0联立两式得磁感应强度B0。(2)要使正离子从O孔垂直于N板射出磁场,离子的运动轨迹如图所示,两板之间正离子只运动一个周期即T0时,有r当在两板之间正离子共运动n个周期,即nT0时,有r(n1,2,3)联立求解,得正离子的速度的可能值为v0(n1,2,3,)。答案(1)(2)(n1,2,3,)突破点(四)带电粒子在有界磁场中的临界极值问题(一)半无界磁场例1(2018海门二模)如图所示,直线MN上方有垂直纸面向外的足够大的有界匀强磁场区域,磁感应强度为B,正、负电子同时从O点以与MN成30角的相同速度v射入该磁场区域(电子质量为m,电量为e),经
15、一段时间后从边界MN射出。(1)它们从磁场中射出时,出射点间的距离;(2)它们从磁场中射出的时间差。解析(1)正、负电子在匀强磁场中做圆周运动的半径相同但绕行方向不同,分别作出正、负电子在磁场中运动的轨迹如图所示。由Bev得:射出点距离为:PQ4Rsin 由题意可知30如图可知,两粒子离开时距O点均为R,所以出射点相距为:L2R。(2)由T得:T负电子在磁场中运动时间:t1TT正电子在磁场中运动时间:t2TT所以两个电子射出的时间差:tt1t2。答案(1)(2)(二)四分之一平面磁场例2如图所示,一个质量为m、电荷量为q的带电粒子从x轴上的P(a,0)点以速度v,沿与x轴正方向成60角的方向射
16、入第一象限内的匀强磁场中,并恰好垂直于y轴射出第一象限。求匀强磁场的磁感应强度B和射出点的坐标。解析轨迹示意图如图所示,由射入、射出点的半径可找到圆心O,并得出半径为r,得B;射出点坐标为(0,a)。答案B射出点坐标为(0,a)(三)正方形磁场例3多选如图所示,在正方形abcd内充满方向垂直纸面向里、磁感应强度为B的匀强磁场。a处有比荷相等的甲、乙两种粒子,甲粒子以速度v1沿ab方向垂直射入磁场,经时间t1从d点射出磁场,乙粒子沿与ab成30角的方向以速度v2垂直射入磁场,经时间t2垂直cd射出磁场,不计粒子重力和粒子间的相互作用力,则下列说法中正确的是()Av1v212 Bv1v24Ct1t
17、221 Dt1t231甲、乙两粒子的运动轨迹如图所示,粒子在磁场中的运行周期为T,因为甲、乙两种粒子的比荷相等,故T甲T乙。设正方形的边长为L,则由图知甲粒子运行半径为r1,运行时间为t1,乙粒子运行半径为r2,运行时间为t2,而r,所以v1v2r1r24,选项A错误、B正确;t1t231,选项C错误、D正确。答案BD(四)矩形磁场例4如图所示,一足够长的矩形区域abcd内充满方向垂直纸面向里、磁感应强度为B的匀强磁场,在ad边中点O,垂直磁场射入一速度方向跟ad边夹角30、大小为v0(未知量)的带正电粒子。已知粒子质量为m,电荷量为q,ad边长为L,ab边足够长,粒子重力不计,求:(1)若粒
18、子恰好不能从磁场下边界射出,求粒子的入射速度大小v01;(2)若粒子恰好沿磁场上边界切线射出,求粒子的入射速度大小v02;(3)若带电粒子的速度v0大小可取任意值,求粒子在磁场中运动的最长时间。解析(1)和(2)两种临界情况的运动轨迹如图所示:若粒子速度为v0,则qv0Bm,解得:v0设圆心在O1处对应圆弧与cd边相切,相应速度为v01由几何关系得:R1R1sin R1L则有:v01设圆心在O2处对应圆弧与ab边相切,相应速度为v02R2R2sin R2v02。(3)由tT和T可知,粒子在磁场中经过的弧所对的圆心角越长,在磁场中运动的时间也越长。则圆弧所对圆心角为22所以运动最长时间为tT。答
19、案(1)(2)(3)(五)三角形磁场例5如图所示,直角三角形ABC中存在一匀强磁场,比荷相同的两个粒子(不计重力)沿AB方向自A点射入磁场,分别从AC边上的P、Q两点射出,则()A从P射出的粒子速度大B从Q射出的粒子速度大C从P射出的粒子,在磁场中运动的时间长D从Q射出的粒子,在磁场中运动的时间长粒子在磁场中做匀速圆周运动,根据几何关系(图示弦切角相等),粒子在磁场中偏转的圆心角相等,根据粒子在磁场中运动的时间:tT,又因为粒子在磁场中做圆周运动的周期T,可知粒子在磁场中运动的时间相等,故C、D错误;如图,粒子在磁场中做圆周运动,分别从P点和Q点射出,由图知,粒子运动的半径RPRQ,又粒子在磁
20、场中做圆周运动的半径R,知粒子运动速度vPvQ,故A错误,B正确。(六)圆形磁场例6多选(2018常州质检)在半径为R的圆形区域内,存在垂直圆面的匀强磁场。圆边上的P处有一粒子源,沿垂直于磁场的各个方向,向磁场区发射速率均为v0的同种粒子,如图所示。现测得:当磁感应强度为B1时,粒子均从由P点开始弧长为R的圆周范围内射出磁场;当磁感应强度为B2时,粒子则从由P点开始弧长为R的圆周范围内射出磁场。不计粒子的重力,则()A前后两次粒子运动的轨迹半径之比为r1r2B前后两次粒子运动的轨迹半径之比为r1r223C前后两次磁感应强度的大小之比为B1B2D前后两次磁感应强度的大小之比为B1B2解析假设粒子
21、带正电,如图1,磁感应强度为B1时,弧长L1R对应的弦长为粒子圆周运动的直径,则r12Rsin Rsin Rsin。如图2,磁感应强度为B2时,弧长L2R对应的弦长为粒子圆周运动的直径,则r22Rsin Rsin Rsin,因此r1r2sinsin ,故A正确,B错误。由洛伦兹力提供向心力,可得:qv0Bm,则B,可以得出B1B2r2r1,故C错误,D正确。答案AD(七)半圆形磁场例7如图所示,长方形abcd长ad0.6 m,宽ab0.3 m,O、e分别是ad、bc的中点,以ad为直径的半圆内有垂直纸面向里的匀强磁场(边界上无磁场),磁感应强度B0.25 T。一群不计重力、质量m3107 kg
22、、电荷量q2103 C的带电粒子以速度v5102 m/s沿垂直ad方向且垂直于磁场射入磁场区域,则()A从Od边射入的粒子,出射点全部分布在Oa边B从aO边射入的粒子,出射点全部分布在ab边C从Od边射入的粒子,出射点分布在Oa边和ab边D从aO边射入的粒子,出射点分布在ab边和bc边解析由r得带电粒子在匀强磁场中运动的半径r0.3 m,从Od边射入的粒子,出射点分布在ab和be边;从aO边射入的粒子,出射点分布在ab边和be边;选项D正确。答案D(八)其他有界磁场例8(2016四川高考)如图所示,正六边形abcdef区域内有垂直于纸面的匀强磁场。一带正电的粒子从f点沿fd方向射入磁场区域,当
23、速度大小为vb时,从b点离开磁场,在磁场中运动的时间为tb,当速度大小为vc时,从c点离开磁场,在磁场中运动的时间为tc,不计粒子重力。则()Avbvc12,tbtc21Bvbvc21,tbtc12Cvbvc21,tbtc21Dvbvc12,tbtc12解析如图所示,设正六边形的边长为l,当带电粒子的速度大小为vb时,其圆心在a点,轨道半径r1l,转过的圆心角1,当带电粒子的速度大小为vc时,其圆心在O点(即fa、cb延长线的交点),故轨道半径r22l,转过的圆心角2,根据qvBm,得v,故。由于T得T,所以两粒子在磁场中做圆周运动的周期相等,又tT,所以。故选项A正确,选项B、C、D错误。带
24、电粒子在磁场中运动的直角三角形关系带电粒子在匀强磁场中做匀速圆周运动是近几年高考的热点,这些考题不但涉及洛伦兹力作用下的动力学问题,而且往往与平面图形的几何关系相联系,而几何图形常常为直角三角形,该类型题目成为考查学生综合分析问题,运用数学知识解决物理问题的难度较大的考题。下面列举两种常见的几何关系。(一)直角三角形的边角关系1多选如图所示,在x轴上方存在磁感应强度为B的匀强磁场,一个电子(质量为m,电荷量为q)从x轴上的O点以速度v斜向上射入磁场中,速度方向与x轴的夹角为45并与磁场方向垂直。电子在磁场中运动一段时间后,从x轴上的P点射出磁场。A电子在磁场中运动的时间为B电子在磁场中运动的时
25、间为CO、P两点间的距离为DO、P两点间的距离为选AC画出电子的运动轨迹如图所示,O1AOP,电子在磁场中的运动时间tT,A正确,B错误;设电子在磁场中做圆周运动的半径为R,根据qvB得R,在直角三角形OO1A中,由几何关系得Rsin 45,解得OP2Rsin 45,C正确,D错误。如图所示,虚线圆所围区域内有方向垂直纸面向里的匀强磁场,磁感应强度为B。一束电子沿圆形区域的直径方向以速度v射入磁场,电子束经过磁场区后,其运动方向与原入射方向成角。设电子质量为m,电荷量为e,不计电子之间相互作用力及所受的重力,求:(1)电子在磁场中运动轨迹的半径R;(2)电子在磁场中运动的时间t;(3)圆形磁场
26、区域的半径r。(1)由牛顿第二定律和洛伦兹力公式得evB解得R。(2)设电子做匀速圆周运动的周期为T,则T由如图所示的几何关系得圆心角所以tT。(3)由如图所示几何关系可知,tan,解得rtan。(3)tan(二)直角三角形中的勾股定理3多选长为l的水平极板间有垂直纸面向里的匀强磁场,如图所示,磁感应强度为B,板间距离也为l,板不带电,现有质量为m、电荷量为q的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v水平射入磁场,欲使粒子不打在极板上,可采用的办法是()A使粒子的速度vB使粒子的速度vC使粒子的速度vD使粒子的速度v满足v选AB带电粒子刚好打在极板右边缘时,有r122l2,又因r1,解得v1;粒子刚好打在极板左
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1