1、周期序数=电子层数 已知碳元素、镁元素和溴元素的原子结构示意图: 它们分别位于第几周期?为什么? 碳有两个电子层,位于第二周期,镁有三个电子层,位于第三周期;溴有四个电子层,位于第四周期。七个周期(1、2、3短周期;4、5、6长周期;7不完全周期类别周期序数起止元素包括元素种数核外电子层数短周期HHeLiNe83NaAr长周期4KKr185RbXe6CsRn32不完全周期7Fr112号26元素周期表上列出来的元素共有112种,而事实上现在发现的元素还有:114号、116号、118号元素。2、族 由短周期元素和长周期元素共同构成的族,叫做主族;完全由长周期元素构成的族,叫做副族。 零族元素均为稀
2、有气体元素。由于它们的化学性质非常不活泼,在通常状况下难以与其他物质发生化学反应,把它们的化合价看作为零,因而叫做零族。第族有几个纵行? (3个) 主族元素的族序数=元素原子的最外层电子数(或:主族序数=最外层电子数) 18个纵行(7个主族;7个副族;一个零族;一个族(8、9、10三个纵行)已知某主族元素的原子结构示意图如下,判断其位于第几周期,第几族?X位于第四周期、第一主族;Y位于第五周期、第七主族。能判断它们分别是什么元素吗?可对照元素周期表。X为钾元素,Y为碘元素。第一节 元素周期表(三) 元素周期表与碱金属元素的性质与原子结构的关系一、碱金属元素1、 在结构上的相似性与递变性相同点:
3、最外层电子数都相同为1。不同点:核电荷数从Li到Cs逐渐增多,电子层数依次增多,从2层增大到6层。【结论】最外层都有个电子,化学性质相似;随着核电荷数的增加,原子的电子层数递增,原子核对最外层电子的引力逐渐减弱,金属性逐渐增强。2、化学性质(1)、碱金属与氧气的反应碱金属与氧气的化学反应方程式(加热)锂(白色、氧化锂)钠(淡黄色、过氧化钠)钾(橙黄色,超氧化钾)相似性:碱金属都能与氧气反应。递变性:周期表中碱金属从上往下,与氧气的反应越来越剧烈。钾与氧气反应生成比过氧化物更为复杂的氧化物(超氧化物)(2)、碱金属与水反应钠与钾都能与氧气、水发生反应,但反应的剧烈程度不同不同点:周期表中碱金属从
4、上往下,与水的反应越来越剧烈。与水反应现象方程式Na在书面上四处游动,发出嘶嘶的声音K剧烈燃烧、轻微爆炸Rb更猛烈、燃烧、爆炸碱金属与水反应都生成氢氧化物和氢气。【总结】随着荷电荷数的增加,电子层数逐渐增加,原子半径逐渐增大,原子核对外层电子的吸引能力逐渐减小,最外层电子易失去,表现在参加化学反应时越来越剧烈,金属性增强。(3)、碱金属元素在化学性质上的规律: 相似性:均能与氧气、与水反应,表现出金属性(还原性); 递变性:与氧气、与水反应的剧烈程度有所不同;在同一族中,自上而下反应的剧烈程度逐渐增大;3、碱金属的物理性质碱金属的主要物理性质碱金属单质颜色和状态密度(g/cm-3)熔点(。C)
5、沸点(。原子半径(nm)Li银白色,柔软0.534180.513470.1520.9797.81882.90.1860.8663.657740.2271.53238.896680.278Cs1.87928.40678.40.265【总结】随核电荷数增加,密度逐渐增大(K除外),熔沸点逐渐降低。元素符号色、态硬度密度熔点沸点均为柔软小大高低银白略带金黄【归纳】结论:同一主族的金属具有相似的化学性质,随着金属元素核电荷数的增大,单质的金属性(还原性)逐渐增强。金属性强弱的比较依据:4、金属性强弱比较方法(1)、根据金属单质与水或者与酸反应置换出氢的难易程度。置换出氢越容易,则金属性越强。(2)、根
6、据金属元素最高价氧化物对应水化物碱性强弱。碱性越强,则金属性越强。(3)、可以根据对应阳离子的氧化性强弱判断。金属阳离子氧化性越弱,则金属性越强。结论:第一节 元素周期表(四) 卤族元素二、卤族元素卤素原子结构示意图:1、结构的相似性和递变性(1)在结构上:最外层都有7个电子,化学性质相似;(2)随着核电荷数的增加,原子的电子层数递增, 原子核对最外层电子的引力逐渐减弱,得电子的能力逐渐减弱,非金属性逐渐减弱。资料卡片卤素单质颜色和状态(常态)密度沸点溶点溶解度(100g水中)F2淡黄绿色气体169g/l(15)-1881-2196反应Cl2黄绿色气体3214g/l(0)-346-101226
7、cm3Br2深红棕色液体3119g/cm3(20)5878-72417gI2紫黑色固体493g/cm3184411350029g【归纳】相似性:都是双原子分子,有颜色,不易溶于水(氟除外),易溶于苯、四氯化碳等有机溶剂(萃取原理)。从氟到碘,单质的颜色逐渐加深,密度依次增大,熔点、沸点依次升高。2、物理性质的变化规律 (随原子序数的递增) 颜色: 浅黄绿色黄绿色深红棕色紫黑色 颜色逐渐加深 状态: 气态液态固态熔沸点: 逐渐升高 密度: 逐渐增大溶解性: 逐渐减小3、卤族元素的化学性质(1) 卤素单质与H2的反应 名称反应条件生成氢化物的稳定性冷暗处爆炸光H2+F2=2HFHF很稳定光照H2+
8、Cl2=2HClHCl稳定高温500H2+Br2=2HBrHBr较不稳定高温、持续加热H2+I2 2HBrHI很不稳定【归纳】 卤素单质与氢气反应、卤素单质与H2反应的剧烈程度:F2Cl2Br2I2 、生成氢化物的稳定性:逐渐减弱.即氢化物稳定性次序为: HFHClHBrHI、反应通式:X2 + H2 = 2HX【结论】卤素与H2、H2O、碱的反应,从氟到碘越来越不剧烈,条件越来越苛刻,再次证明了从结构上的递变有结构决定性质。(2) 卤素单质间的置换反应:NaBr溶液滴加氯水上层:无色下层:橙红色滴加CCl4【实验步骤】 溶液由无色变成橙黄色 【结论】:氯可以把溴从其化合物中置换出来2NaBr
9、+ Cl2 = 2NaCl + Br2 KI溶液紫红色 溶液由无色变成棕黄色氯可以把碘从其化合物中置换出来 2kI + Cl2 = 2kCl + I2 滴加溴水【结论】溴可以把碘从其化合物中置换出来 2kI + Br2 = 2kBr + I2 (3)随核电荷数的增加,卤素单质氧化性强弱顺序:F2 Cl2 Br2 I2氧化性逐渐减弱非金属性逐渐减弱(4) 非金属性强弱判断依据:1、非金属元素单质与H2 化合的难易程度,化合越容易,非金属性也越强。2、形成气态氢化物的稳定性,气态氢化物越稳定,元素的非金属性也越强。3、最高氧化物对应水化物的酸性强弱,酸性越强,对于非金属元素性也越强。第二节 元素周
10、期律(一)一、原子核外电子的排布通常,能量高的电子在离核较远的区域运动,能量低的电子在离核较近的区域运动。这就相当于物理学中的万有引力,离引力中心越近,能量越低;越远,能量越高。1、电子层的划分 电子层(n) 1、 2、3、4、 5、6、7 电子层符号 K、L、M、N、O、P、Q 离核距离 近 远 能量高低 低 高核电荷数元素名称各层电子数LM氢H氦He铍Be硼B碳C氮N氧O9氟F10氖Ne1112镁Mg13铝Al14硅Si15磷P16硫S17氯Cl氩Ar2、核外电子的排布规律(1)各电子层最多容纳的电子数是2n2个(n表示电子层) (2)最外层电子数不超过8个(K层是最外层时,最多不超过2个
11、);次外层电子数目不超过18个,倒数第三层不超过32个。(3)核外电子总是尽先排布在能量最低的电子层,然后由里向外从能量低的电子层逐步向能量高的电子层排布(即排满K层再排L层,排满L层才排M层)。原子结构示意图。 如钠原子的结构示意图可表示为 【练习】1、判断下列示意图是否正确?【答案】(A、B、C、D均错)A、B违反了最外层电子数为8的排布规律,C的第一电子层上应为2个电子,D项不符合次外层电子数不超过18的排布规律。第二节 元素周期律(二)第二节 元素周期律(二) 随着原子序数的递增,原子核外电子层排布变化的规律性原子序数电子层数最外层电子数123101811181、随着原子序数的递增,元
12、素原子的最外层电子排布呈现周期性变化。原子半径的变化3-9大小11-172、随着原子序数的递增,元素原子半径呈现周期性变化【提问】怎样根据粒子结构示意图来判断原子半径和简单离子半径的大小呢?【回答】原子半径和离子半径的大小主要是由核电荷数、电子层数和核外电子数决定的。粒子半径大小比较规律:(1)电子层数:一般而言,电子层数越多,半径越大(2)核电荷数:电子层数相同的不同粒子,核电荷数越大,半径越小。(3)核外电子数:电子数增多,增加了相互排斥,使原子半径有增大的趋势。观察电子数,电子数多的,半径较大。如氯离子大于氯原子。其他都一样的情况下,就像坐座位,多一个电子就像多一个人,只能往外挤了,半径
13、就变大了。元素主要化合价+1+2+3+4,-4=5,-3-2+7,-1CL+5,-3+6,-2+7,-1【结论】随着原子序数的递增,元素化合价也呈现周期性变化。(1) 最高正价与最外层电子数相等(2) 最外层电子数4时出现负价(3) 最高正化合价与负化合价绝对值和为8(4) 金属元素无负价(5) 氟无正价对于稀有气体元素,由于他们的化学性质不活泼,在通常状况下难与其他物质发生化学反应。因此,把它们的化合价看作是0。元素主要化合价变化规律性主要化合价的变化 1-2+103-10+1+5 -4-1011-18+1+7-4-103、随着原子序数的递增,元素化合价呈现周期性变化3-9、11-17号元素
14、随原子序数的递增,原子半径逐渐变小,得电子能力逐渐增强,失电子能力逐渐减弱,4、随着原子序数的递增,元素金属性与非金属性呈现周期性变化5、元素的性质随元素原子序数的递增呈现周期性变化,这个规律叫元素周期律。元素周期律的实质: 元素性质的周期性变化是元素原子的核外电子排布的周期性变化的必然结果。1、下列元素的原子半径依次减小的是( AB )A. Na、Mg、Al B. N、O、FC. P、Si、Al D. C、Si、P第二节 元素周期律(三)同周期元素从左到右电子层数相同、核电荷数增加原子半径减小原子核的吸引能力增强原子失电子能力逐渐减弱,得电子能力逐渐增强填写下列各元素的气态氢化物、最高价氧化
15、物及最高价氧化物对应的水化物的化学式:元素符号 气态氢化物-SiH4PH3H2SHCl-最高价氧化物Na2OMgOAl2O3SiO2P2O5SO3Cl2O7对应的水化物NaOHMg(OH)2Al(OH)3H4SiO4H3PO4H2SO4HClO4一、第三周期元素性质变化规律实验一 钠、镁、铝与水反应的实验【实验一】Mg、Al和水的反应:分别取一小段镁带、铝条,用砂纸去掉表面的氧化膜,放入两支小试中,加入23 ml水,并滴入两滴酚酞溶液。观察现象。过一会儿,分别用酒精灯给两试管加热至沸腾,并移开酒精灯,再观察现象。与冷水反应化学方程式2Na+2H2O=2NaOH+H2与沸水反应Mg带表面有气泡;
16、Mg带表面变红Mg + 2H2O=Mg(OH)2 + H2结论Na与冷水剧烈反应,Mg只能与沸水反应,Al与水不反应最高价氧化物对应的水化物碱性强弱强碱中强碱两性 (1) Na与水反应的现象:常温下,与H2O剧烈反应,浮于水面并四处游动,同时产生大量无色气体,溶液变红。【方程式】2Na+2H2O=2NaOH+H2 (2) 放少许镁带于试管中,加2mL水,滴入2滴酚酞试液,观察现象;过一会加热至沸,再观察现象。【现象】镁与冷水反应缓慢,产生少量气泡,滴入酚酞试液后不变色。加热后镁与沸水反应较剧烈,产生较多气泡,溶液变为红色。【方程式】Mg+2H2O Mg(OH)2+H2【结论】镁元素的金属性比钠
17、弱(3) 铝与水反应现象:在常温下或加热条件下,遇水无明显现象,很难与水发生反应。Na、Mg、Al的氧化物及其最高价氧化物的水化物的性质。1、 碱性氧化物均为金属氧化物,但金属氧化物不一定是碱性氧化物。2、 判断碱性氧化物的标准是看该氧化物能否和酸反应生成盐和水。3、 判断酸性氧化物的标准是看该氧化物能否和碱反应生成盐和水。4、 若某氧化物既能和酸反应生成盐和水,又能和碱反应生成盐和水,称其为两性氧化物。Na2O、MgO只与酸反应生成盐和水,属碱性氧化物。Al2O3既能与酸反应生成盐和水,又能与碱反应生成盐和水,属两性氧化物。Na、Mg、Al对应的最高价氧化物的水化物是NaOH、Mg(OH)2
18、、Al(OH)3。其中NaOH是强碱,Mg(OH)2是难溶于H2O的中强碱,Al(OH)3是两性氢氧化物。碱性强弱:NaOHMg(OH)2Al(OH)3 金属性:NaMg实验二、取铝片和镁带,擦去氧化膜,分别和2mL 1mol/L盐酸反应。【实验二】Mg、Al与稀盐酸反应比较反应迅速,放出大量的H2反应方程式Mg、Al都很容易与稀盐酸反应,放出H2,但Mg比Al更剧烈Mg+2HCl=MgCl2+H2 2Al+6HCl=2 AlCl3+3H2 Mg+2H=Mg2+H2 2 Al+6H=2 Al3+3H2 【现象】镁与铝均能与盐酸反应产生气泡。但镁反应更剧烈第三周期的非金属Si、P、S、Cl的非金
19、属性的强弱。 非金属性:SiPS单质与氢气反应的条件磷蒸气与氢气能反应加热光照或点燃时发生爆炸而化合最高价氧化物对应的水化物(含氧酸)酸性强弱H2SiO3弱酸中强酸强酸强酸(比H2SO4酸性强)第三周期的非金属Si、P、S、Cl的非金属性逐渐增强氢化物的稳定性:SiH4PH3H2SHCl 酸性强弱:H4SiO4 H3PO4H2SO4 HClO4 同周期元素性质递变规律:从左到右,金属性逐渐减弱,非金属性逐渐增强1、元素周期律(1)定义:元素的性质随着原子序数的递增而呈周期性的变化,这条规律叫做元素周期律。(2)实质:原子核外电子排布的规律性变化。元素金属性和非金属性的递变根据同周期、同主族元素
20、性质的递变规律可推知:金属性最强的元素是铯(Cs),位于第6周期第A族(左下角),非金属性最强的元素是氟(F),位于第2周期第A族(右上角)。位于分界线附近的元素既有一定的金属性,又有一定的非金属性,如Al、Si、Ge等第三节 化学键(一) 离子键第三节 化学键 一、离子键方程式: 2Na+Cl2 2NaCl 现象:钠燃烧、集气瓶内大量白色烟1.定义:阴阳离子结合形成化合物时的这种静电的作用,叫作离子键。从定义上分析离子键形成的条件和构成粒子(1)、成键粒子:阴阳离子(2)、成键性质:静电作用(静电引力和斥力)2、形成条件: 活泼金属 M Mn+ 化合 +me-离子键活泼非金属 X Xm-3.
21、离子键的实质:阴阳离子间的静电吸引和静电排斥。由离子键构成的化合物叫做离子化合物,所以一般离子化合物都很稳定。不是只有活泼的金属元素和活泼的非金属元素之间的化合才能形成离子键,如铵离子与氯离子也能形成离子键、钠离子与硫酸根离子也能形成离子键。含有离子键的化合物就是我们初中所学过的离子化合物。大多数的盐、碱、低价金属氧化物都属于离子化合物,所以它们都含有离子键。【提问】(1)所有金属和非金属化合物都能形成离子键吗?举例说明。【回答】AlCl3 、AlBr3、AlI3化合物中,铝与氯之间所形成的并非离子键,均不是离子化合物(2)所有非金属化合物都不能形成离子键吗?【回答】NH4Cl 、NH4Br
22、等化合物。NH4、CO32、SO42、OH等原子团也能与活泼的非金属或金属元素形成离子键。强碱与大多数盐都存在离子键。二、电子式在元素符号的周围用小黑点(或)来表示原子最外层电子的式子叫电子式。如Na、Mg、Cl、O的电子式我们可分别表示为:1、表示原子 Na Mg ?Cl ?O?习惯上,写的时候要求对称。【讲解】电子式同样可以用来表示阴阳离子,例如2、表示简单离子: 阳离子:Na+ Mg2+ Al3+ 阴离子: S2- Cl- O2-【讲解】.电子式最外层电子数用?(或)表示;.阴离子的电子式不但要画出最外层电子数,还应用 括起来,并在右上角标出“n-”电荷字样;.阳离子不要画出最外层电子数,只需标出所带的电荷数。3、表示离子化合物 NaF MgO KClNa+F- Mg2+O2- K+Cl-【提问对于象M
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1