ImageVerifierCode 换一换
格式:DOCX , 页数:20 ,大小:185.41KB ,
资源ID:17712358      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/17712358.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(智能控制技术在电气工程自动化中的应用模糊控制Word文件下载.docx)为本站会员(b****6)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

智能控制技术在电气工程自动化中的应用模糊控制Word文件下载.docx

1、通过计算机可以编程可以实现对人类的大脑进行模仿,比如收集、分析、处理、交换以及回馈信息,因此计算机通过对人类大脑的模仿会在很大程度上带动了电气工程自动化的快速发展。在我们日常的生产、交换、流通和分配中,无时无刻都需要电气工程自动化的控制,通过自动化控制,可以实现自动化的电气工程,这样可以节约人力资源,提高工作效率,进而使得生产和工作的总体效率得到提高。1.3 人工智能的应用现状 目前能够用来研究人工智能的主要物质基础以及能够实现人工智能技术平台的机器就是计算机,人工智能的发展历史是和计算机科学技术的发展史联系在一起的。除了计算机科学以外,人工智能还涉及信息论、控制论、自动化、仿生学、生物学、心

2、理学、数理逻辑、语言学、医学和哲学等多门学科。人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。1.4 人工智能在电气工程领域的发展 随着人工智能技术的不断发展, 很多研究人员展开了针对人工智能在电气工程自动化控制方面的研究,例如:应该如何将人工智能系统应用于故障的诊断和预测、电气产品设计优化和保护与控制等领域。在优化设计方面, 设计电气设备是很繁琐的工作。它需要对电磁场、电路、电器电机等学科的知识综合性的运用, 同时还要使用以往设计中的经验。设计以往的产品时,通常是在根据经验和实验的基础上

3、, 通过手工的方式开展的。这样的设计过程很难取得最优的设计方案。电气产品的设计随着计算机技术的发展, 逐渐由手工设计向计算机辅助设计不断转变, 使开发产品的周期大大减少。尤其是在引进了人工智能技术之后,更加促进了CAD技术的发展,大大提高了设计产品的质量和效率。人工智能技术在电气设计方面的应用主要包括专家系统和遗传算法。其中的遗传算法是一种优化的先进算法,在产品的设计优化上有举足轻重的作用。因此电气产品的人工智能化设计很多都采用了这种方式进行优化。电气设备的故障征兆和故障之间有着很多必然和偶然的关系,具有非线性、不确定性的特点, 它的优势能够通过人工智能的方式得到最大的发挥。人工智能技术在电气

4、设备诊断故障方面的应用主要由:专家系统、模糊逻辑和神经网络等。在电力系统之中, 变压器因为重要的地位而受到很多研究者的关注。目前诊断变压器故障的常用方法主要是分析变压器油中分解出来的气体, 通过这种气体分析找出变压器的故障范围。同时在电动机和发电机等方面,人工智能诊断故障技术也有了长足的发展。2 人工智能理论概述2.1 人工智能的基本概念人工智能控制技术的主要方法有模糊控制、基于知识的专家控制、神经网络控制和集成智能控制等,以及常用优化算法有:遗传算法、蚁群算法、免疫算法等。2.2 人工智能控制技术的主要方法2.2.1 模糊控制 模糊控制以模糊集合、模糊语言变量、模糊推理为其理论基础,以先验知

5、识和专家经验作为控制规则 。其基本思想是用机器模拟人对系统的控制,就是在被控对象的模糊模型的基础上运用模糊控制器近似推理等手段,实现系统控制。在实现模糊控制时主要考虑模糊变量的隶属度函数的确定,以及控制规则的制定。模糊控制系统是一种自动控制系统,它是以模糊数学、模糊语言形式的知识表示以及模糊逻辑的推理规则为理论基础,采用计算机控制技术构成的一种具有反馈通道的闭环结构的数字控制系统。它的造成核心是具有智能性的模糊控制器,这也是它与其它控制系统的不同之处。2.2.2 专家控制 专家控制是将专家系统的理论技术与控制理论技术相结合,仿效专家的经验,实现对系统控制的一种智能控制。主体由知识库和推理机构组

6、成,通过对知识的获取与组织,按某种策略适时选用恰当的规则进行推理,以实现对控制对象的控制。 专家控制可以灵活地选取控制率,灵活性高;可通过调整控制器的参数,适应对象特性及环境的变化,适应性好;通过专家规则,系统可以在非线性、大偏差的情况下可靠地工作,鲁棒性强。2.2.3 神经网络控制神经网络模拟人脑神经元的活动,利用神经元之间的联结与权值的分布来表示特定的信息,通过不断修正连接的权值进行自我学习,以逼近理论为依据进行神经网络建模,并以直接自校正控制、间接自校正控制、神经网络预测控制等方式实现智能控制。2.2.4 集成智能控制智能控制技术的集成包括两方面:一方面是将几种智能控制方法或机理融合在一

7、起,构成高级混合智能控制系统,如模糊神经( FNN)控制系统、基于遗传算法的模糊控制系统、模糊专家系统等;另一方面是将智能控制技术与传统控制理论结合,形成智能复合型控制器,如模糊PID 控制、神经元PID控制、模糊滑模控制、神经网络最优控制等。2.3 人工智能控制技术常用的优化算法2.3.1 遗传算法遗传算法(GA)是一种基于模拟遗传机制和进化论的并行随机搜索优化算法。遗传算法依照所选择的适配值函数,通过遗传中的复制、交叉及变异对个体进行筛选,使适配值高的个体被保留下来,组成新的群体,新群体既继承了上一代的信息,又优于上一代,这样周而复始,群体中个体适应度不断提高,直到满足一定的条件。2.3.

8、2 蚁群算法蚁群算法是群体智能的典型实现,是一种基于种群寻优的启发式搜索算法。蚁群算法的基本思想:当一只蚂蚁在给定点进行路径选择时。被先行蚂蚁选择次数越多的路径。被选中的概率越大。蚁群算法不仅能够智能搜索、全局优化, 而且具有鲁棒性、正反馈、分布式计算、易与其它算法结合等特点。3 模糊控制 3.1 引言现今在各个领域中被逐渐采用的模糊控制,是一种非线性的控制方法,是属于非线性、智能控制范畴的一种计算机数字控制,就是在被控对象的模糊模型的基础上,运用模糊控制器近似推理手段,实现系统控制的一种方法。由于模糊控制主要是模仿人的控制经验而不是依赖于控制对象的数学模型,因此模糊控制能近似地反映人的控制行

9、为,无需建立对象的精确数学模型,具有很强的鲁棒性1。本文以PC为控制核心运用模糊控制的方法来完成起动过程,使起动过程中电流恒定,减小电动机起动时起动电流对电网的冲击。本章将在介绍模糊控制基本原理的基础上阐述用于异步电动机软起动的模糊控制器的设计过程。 3.2 模糊控制的基本原理它的造成核心是具有智能性的模糊控制器,这也是它与其它控制系统的不同之处2-3。图 3.1 模糊控制系统组成框图根据模糊控制系统的定义,不难想象模糊控制系统组成具有常规计算机控制系统的结构形式,模糊控制系统组成框图如图3.1所示。由图可知,模糊控制系统通常由模糊控制器、输入/输出接口、执行机构、被控对象和测量装置等五个部分

10、组成。(1) 被控对象被控对象可以是确定的或模糊的、单变量或多变量的、有滞后或无滞后的、定常的或时变的也可以是线性的或非线性的。对于那些难以建立精确数学模型的复杂对象,更适宜采用模糊控制。(2) 执行机构除了电气的以外,如各类交、直流电动机,步进电动机,伺服电动机,还有各类气动调节阀和液压阀等。(3) 模糊控制器是控制系统中的核心部分,是一种采用基于模糊知识表示和规则推理的语言型控制器。(4) 输入/输出接口在实际控制系统中由于多数被控对象的控制量及其可观测状态是模拟量。因此模糊控制系统与通常的全数字控制系统一样必须具有A/D和D/A转换单元。而且在模糊控制系统中还应该有适用于模糊逻辑处理的“

11、模糊化”与“解模糊化”环节,这部分通常也被看作是模糊控制器的输入/输出接口。(5) 测量装置它是将被控对象的各种待测量转换为电信号的一类装置,通常由各类数字或模拟的测量仪器、检测元件或者传感器等组成。它在模糊控制系统中占有十分重要的地位,其精度往往直接影响整个系统的性能指标,因此要求其精度高、可靠性及稳定性好。3.2 模糊控制器的设计3.2.1模糊控制器的组成模糊控制器是模糊控制系统的核心,一个模糊控制系统的性能优劣,主要取决于模糊控制器的结构、采用的模糊规则、合成推理算法以及模糊决策的方法等因素。由于所采用的模糊规则是由模糊理论中模糊条件语句来描述的,因此模糊控制器是一种语言型控制器,故也称

12、为模糊语言控制器。模糊控制器的组成框图如图3.2所示。它包括有:入量模糊化接口、数据库、规则库、推理机和解模糊接口五个部分。图3.2 模糊控制组成(1)模糊化接口模糊控制器的输入必须通过模糊化才能用于模糊控制器输出求解,因此它实际上是模糊控制器的输入接口。它的主要作用是将真实的确定量输入转换成一个模糊矢量。(2)数据库数据库所存放的是所有输入、输出变量的全部模糊子集的隶属度值(即经过论域等级的离散化以后对应值的集合),若论域为连续域,则为隶属度函数。在规则推理的模糊关系方程求解过程中,它向模糊推理提供数据。(3)规则库模糊控制器的规则是基于专家知识或手动操作人员长期积累的经验,它是按人的直接推

13、理的一种语言表示形式。规则库是用来存放全部模糊控制规则的,并为模糊推理提供控制规则。(4)推理机模糊推理是模糊控制器的核心,它具有模拟人的基于模糊概念的推理能力。在模糊控制器中,模糊推理根据输入模糊量,由模糊控制规则完成模糊推理来求解模糊关系方程,并获得模糊控制量。(5)解模糊接口为了将模糊控制量转换为精确量,由模糊控制器的输出接口作“解模糊” 处理(即清晰化),清晰化的作用是将模糊推理得到的模糊控制量变换为实际用于控制的清晰量。3.2.2 以电流为控制量的模糊控制器的设计 1、模糊控制软启动工作原理下面本文讨论基于电流控制的软起动器的模糊控制器4-10的具体设计方法。基于电流控制的软起动控制

14、系统的框图如图3.3所示。起动初始,交流接触器KM1闭合,KM2断开。在交流电机输入电压主回路各串接两支反并联晶闸管。利用同步变压器获取同步电压信号,作为脉冲发生器的基准信号。交流电机定子电流与启动电流给定值一起作为模糊调节器的输入信号。模糊调节器首先计算起动电流设定值与反馈电流的偏差和偏差变化率,然后以电流及电流的偏差为输入量,经模糊化后进行模糊推理,最后将模糊推理结果解模糊判决后作为输出调节量。模糊调节器输出的触发角信号,送至脉冲发生器,脉冲发生器利用同步电压信号调节脉冲相位,由触发角决定每个周期触发脉冲的产生时刻,进而调节晶闸管输出电压。当交流电机软起动完成后,交流接触器KM1断开,KM

15、2闭合,将电网电压直接接在交流电机定子绕组上,同时将软起动装置从主回路中切除,交流电动机进入稳定工作状态,软起动过程结束。 图3.3 系统框图2、模糊控制器设计1) 结构的选择模糊控制器设计首先需要确定模糊控制器的输入和输出变量,模糊控制器的输入变量一般有以下三种:(1) 测量信号;(2) 测量信号偏差;(3) 测量信号偏差变化率;从理论上讲,模糊控制器的维数越高,控制越精细,但是维数过高,控制规则变得过于复杂,控制算法的实现也相当困难。本模糊控制器的结构为二维模糊控制器,交流异步电动机软起动模糊控制器设计以实现交流异步电动机起动过程电流恒定为目标,因此本文选择起动电流设定值的偏差及偏差的变化

16、为模糊控制器的输入量,以晶闸管触发角调节量为模糊控制器的输出量,同时设置一个积分环节对每次调节量进行累计。晶闸管实际最大可调范围在150之间(为晶闸管续流角),因此在积分器后加一个限幅环节。模糊控制器的原理图如图3.4所示。图3.4 模糊控制器的原理图图中为启动电流设定值,为测量值,为偏差的量化因子,为偏差变化的量化因子,为控制量的比例因子。2)确定语言变量及隶属函数电流偏差是指电流的给定值与检测到的异步电动机起动电流值的差值,取电流偏差的语言变量为,论域取:X=-10 -6 -3 0 3 6 10,论域上的模糊子集(i=1,2, ,7),在模糊控制区内将电流偏差分为7个模糊状态 PB(正大电

17、流偏差)、PM(正中电流偏差)、PS(正小电流偏差)、Z(零电流偏差)、NS(负小电流偏差)、NM(负中电流偏差)、 NB(负大电流偏差),即的语言集取:NB NM NS Z PS PM PB。采用三角形隶属函数如图3.5,给出对应于7个模糊状态的隶属度值如表3.1所示。-10-6-33610PB1PM0.25PSZNSNMNB表3.1 模糊变量E隶属度值图3.5 电流偏差隶属函数电流的偏差变化率是指一个采样周期内电流的变化值,取电流偏差变化率的语言变量为EC,论域取:Y= -10 -6 -3 0 3 6 10,论域上的模糊子集(j1,2,3),在模糊控制区内将电流变化率分为3个模糊状态 N(

18、负) Z(零) P(正) ,即 N Z P 。采用三角形隶属函数如图3.6,给出对应于3个模糊状态的隶属度值如表3.2所示。P0.5N表3.2 模糊变量EC隶属度值图3.6 电流偏差变化率的隶属函数模糊控制器的输出为触发角的变化值,取其语言值变量为U,触发角的变化值的论域取:Z= -10 -6 -3 0 3 6 10,论域上的模糊子集(i1,2,3),触发角的变化值NB NM NS ZO PS PM PB,采用三角形隶属函数如图3.7,给出对应于7个模糊状态的隶属度值如表3.3所示。表3.3 模糊变量U隶属函数值图3.7 触发角隶属度函数3)建立模糊控制规则双输入单输出型模糊控制器的控制规则为

19、“if E and EC then C”。根据交流电动机软启动过程恒流控制原理和实际操作经验,形成17条模糊控制规则如下:1) if E=PB then U=NB2) if E=NB then U=PB 3) if E=PM and EC=P then U=NB 4) if E=PM and EC=Z then U=NM 5) if E=PM and EC=N then U=NS 6) if E=NM and EC=N then U=PB 7) if E=NM and EC=Z then U=PM 8) if E=NM and EC=P then U=PS 9) if E=PS and EC=

20、P then U=NM 10) if E=PS and EC=Z then U=NS 11) if E=PS and EC=N then U=Zero 12) if E=NS and EC=N then U=PM 13) if E=NS and EC=Z then U=PS 14) if E=NS and EC=P then U=Zero 15) if E=Zero and EC=N then U=PS 16) if E=Zero and EC=Z then U=Zero 17) If E=Zero and EC=P then U=NS 4)模糊逻辑推理及解模糊判决 模糊逻辑推理采用Mamda

21、ni推理法。Mamdani采用蕴涵算子: (3.1)其模糊输出推理算式为: (3.2) 在多规则时,可知其模糊关系式为: (3.3)由表3.1、表3.2、表3.3和式3.1、3.2、3.3可求得模糊关系:, 解模糊判决有多种方法,在采用单片机实现时,为减少运算量,可采用最大隶属度平均值法。在仿真软件里,计算机硬件处理功能强大,可选用重心法。5)比例因子及量化因子的选择 当由计算机实现模糊控制算法进行模糊控制时,每次采样得到的被控制量须经计算机计算,得到模糊控制器的输入变量即误差E及误差变化EC。为了进行模糊化处理,必须将输入变量从基本论域转换到相应的模糊集论域,从而引出量化因子和的概念。而经模

22、糊控制算法给出的控制量(精确量),还不能直接控制对象,须将其转换到为控制对象所能接受的基本论域中去,所以又引出控制量比例因子。量化因子、和比例因子对控制系统的动静态性能有较大影响,经分析可归纳如下:(1) 当增大时,相当于缩小了误差的基本论域,增大了误差变量的控制作用,因此使得上升时间变短,但过大时会出现超调,并使得系统的过渡过程变长,严重时甚至使系统产生振荡;若较小,则系统上升较慢,快速性差,同时稳态误差增大。(2) 选择较大时,提高了模糊控制器的灵敏度,能有效地抑制超调,但系统的响应速度变慢;较小时则会产生较大的超调和振荡。对超调的影响十分明显。的大小意味着对输入变量误差和误差变化的不同加

23、权程度,二者之间也相互影响。(3) 输出比例因子作为模糊控制器的输出增益,它的大小直接影响着控制器的输出和模糊控制系统特性。Ku在系统响应的上升和稳定阶段对控制性能有不同影响。在上升阶段,选择越大系统态响应越快,但容易导致系统超调;在稳定阶段,过大会引起振荡。较小对系统稳定有利,但将延长响应时间。图3.4中,为偏差的量化因子,为偏差变化的量化因子,在设计模糊控制时,可根据变量的基本论域和模糊集论域确定其初值,但实际上变量的基本论域只能根据理论估计其大致范围,具体数值还需要在线调试整定。经过整定,模糊控制器比例因子设定为0.38,设定为0.3,设定为15。4 模糊控制在电气工程自动化领域的应用情

24、况随着智能控制技术的不断发展, 很多研究人员展开了针对智能控制技术在电气工程自动化控制方面的研究,例如:尤其是在引进了智能控制技术之后,更加促进了CAD技术的发展,大大提高了设计产品的质量和效率。智能控制技术在电气设计方面的应用主要包括专家系统和遗传算法。因此电气产品的智能控制技术设计很多都采用了这种方式进行优化。电气设备的故障征兆和故障之间有着很多必然和偶然的关系,具有非线性、不确定性的特点, 它的优势能够通过智能控制的方式得到最大的发挥。智能控制技术在电气设备诊断故障方面的应用主要由:4.1 模糊控制的应用研究模糊控制以现代控制理论为基础,同时与自适应控制技术、人工智能技术、神经网络技术的

25、相结合,在控制领域得到了空前的应用。1、Fuzzy-PID复合控制Fuzzy-PID复合控制将模糊技术与常规PID控制算法相结合,达到较高的控制精度。当温度偏差较大时采用Fuzzy控制,响应速度快,动态性能好;当温度偏差较小时采用PID控制,静态性能好,满足系统控制精度。因此它比单个的模糊控制器和单个的PID调节器都有更好的控制性能。2、自适应模糊控制这种控制方法具有自适应自学习的能力,能自动地对自适应模糊控制规则进行修改和完善,提高了控制系统的性能。对于那些具有非线性、大时滞、高阶次的复杂系统有着更好的控制性能。3、参数自整定模糊控制也称为比例因子自整定模糊控制。这种控制方法对环境变化有较强的适应能力,在随机环境中能对控制器进行自动校正,使得控制系统在被控对象特性变化或扰动的情况下仍能保持较好的性能。4、专家模糊控

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1