ImageVerifierCode 换一换
格式:DOCX , 页数:11 ,大小:71.78KB ,
资源ID:17689274      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/17689274.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(正交频分复用OFDM原理及相关分析资料Word文件下载.docx)为本站会员(b****4)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

正交频分复用OFDM原理及相关分析资料Word文件下载.docx

1、然而上述方法所需设备非常复杂,当M很大时,需要大量的正弦波发生器,滤波器,调制器和解调器等设备,因此系统非常昂贵。为了降低OFDM系统的复杂度和成本,我们考虑用离散傅立叶变换(DFT)和反变换(IDFT)来实现上述功能。如果在发送端对D(m)做IDFT,把结果经信道发送到接收端,然后对接收到的信号再做DFT,取其实部,则可以不失真地恢复出原始信号D(m)。这样就可以利用离散傅立叶变换来实现OFDM信号的调制和解调。实现框图如图4和图5所示。用DFT和IDFT实现的OFDM系统,大大降低了系统的复杂度,减小了系统成本,为OFDM的广泛应用奠定了基础。三、OFDM系统的性能特点通过各个子载波的联合

2、编码,OFDM具有很强的抗衰落能力,同时也有很强的抗窄带干扰能力,因为这些干扰仅仅影响到很小一部分的子信道。OFDM系统可以有效地抗信号波形间干扰,适用于多径环境和衰落信道中的高速数据传输。OFDM信道利用率高,这点在频谱资源有限的无线环境中尤其重要。但是OFDM存在两个缺陷:对频率偏移和相位噪声比较敏感;峰值与平均值比相对较大,这个比值变大会降低射频发射器的功率效率。四、结束语本文较详细地叙述了OFDM技术的基本原理,实现和它的性能特点。OFDM由于其频谱利用率高、成本低等原因越来越受到人们的关注。现在OFDM技术得到了广泛应用,尤其是在移动通信领域,预计第三代以后的移动通信的主流技术将是O

3、FDM技 。OFDM技术的基本原理在传统的多载波通信系统中,整个系统频带被划分为若干个互相分离的子信道(载波)。载波之间有一定的保护间隔,接收端通过滤波器把各个子信道分离之后接收所需信息。这样虽然可以避免不同信道互相干扰,但却以牺牲频率利用率为代价。而且当子信道数量很大的时候,大量分离各子信道信号的滤波器的设置就成了几乎不可能的事情。 上个世纪中期,人们提出了频带混叠的多载波通信方案,选择相互之间正交的载波频率作子载波,也就是我们所说的OFDM。这种“正交”表示的是载波频率间精确的数学关系。按照这种设想,OFDM既能充分利用信道带宽,也可以避免使用高速均衡和抗突发噪声差错。OFDM是一种特殊的

4、多载波通信方案,单个用户的信息流被串/并变换为多个低速率码流,每个码流都用一个子载波发送。OFDM不用带通滤波器来分隔子载波,而是通过快速傅立叶变换(FFT)来选用那些即便混叠也能够保持正交的波形。OFDM是一种无线环境下的高速传输技术。无线信道的频率响应曲线大多是非平坦的,而OFDM技术的主要思想就是在频域内将给定信道分成许多正交子信道,在每个子信道上使用一个子载波进行调制,并且各子载波并行传输。这样,尽管总的信道是非平坦的,具有频率选择性,但是每个子信道是相对平坦的,在每个子信道上进行的是窄带传输,信号带宽小于信道的相应带宽,因此就可以大大消除信号波形间的干扰。由于在OFDM系统中各个子信

5、道的载波相互正交,它们的频谱是相互重叠的,这样不但减小了子载波间的相互干扰,同时又提高了频谱利用率。OFDM技术属于多载波调制(MultiCar rierModulation,MCM)技术。有些文献上将OFDM和MCM混用,实际上不够严密。MCM与OFDM常用于无线信道,它们的区别在于:OFDM技术特指将信道划分成正交的子信道,频道利用率高;而MCM,可以是更多种信道划分方法。OFDM技术的推出其实是为了提高载波的频谱利用率,或者是为了改进对多载波的调制,它的特点是各子载波相互正交,使扩频调制后的频谱可以相互重叠,从而减小了子载波间的相互干扰。在对每个载波完成调制以后,为了增加数据的吞吐量、提

6、高数据传输的速度,它又采用了一种叫作HomePlug的处理技术,来对所有将要被发送数据信号位的载波进行合并处理,把众多的单个信号合并成一个独立的传输信号进行发送。另外OFDM之所以备受关注,其中一条重要的原因是它可以利用离散傅立叶反变换/离散傅立叶变换(IDFT/DFT)代替多载波调制和解调。OFDM增强了抗频率选择性衰落和抗窄带干扰的能力。在单载波系统中,单个衰落或者干扰可能导致整个链路不可用,但在多载波的OFDM系统中,只会有一小部分载波受影响。此外,纠错码的使用还可以帮助其恢复一些载波上的信息。通过合理地挑选子载波位置,可以使OFDM的频谱波形保持平坦,同时保证了各载波之间的正交。OFD

7、M尽管还是一种频分复用(FDM),但已完全不同于过去的FDM。OFDM的接收机实际上是通过FFT实现的一组解调器。它将不同载波搬移至零频,然后在一个码元周期内积分,其他载波信号由于与所积分的信号正交,因此不会对信息的提取产生影响。OFDM的数据传输速率也与子载波的数量有关。OFDM每个载波所使用的调制方法可以不同。各个载波能够根据信道状况的不同选择不同的调制方式,比如BPSK、QPSK、8PSK、16QAM、64QAM等等,以频谱利用率和误码率之间的最佳平衡为原则。我们通过选择满足一定误码率的最佳调制方式就可以获得最大频谱效率。无线多径信道的频率选择性衰落会使接收信号功率大幅下降,经常会达到3

8、0dB之多,信噪比也随之大幅下降。为了提高频谱利用率,应该使用与信噪比相匹配的调制方式。可靠性是通信系统正常运行的基本考核指标,所以很多通信系统都倾向于选择BPSK或QPSK调制,以确保在信道最坏条件下的信噪比要求,但是这两种调制方式的频谱效率很低。OFDM技术使用了自适应调制,根据信道条件的好坏来选择不同的调制方式。比如在终端靠近基站时,信道条件一般会比较好,调制方式就可以由BPSK(频谱效率1bit/s/Hz)转化成16QAM64QAM(频谱效率46bit/s/Hz),整个系统的频谱利用率就会得到大幅度的提高。自适应调制能够扩大系统容量,但它要求信号必须包含一定的开销比特,以告知接收端发射

9、信号所应采用的调制方式。终端还要定期更新调制信息,这也会增加更多的开销比特。OFDM还采用了功率控制和自适应调制相协调工作方式。信道好的时候,发射功率不变,可以增强调制方式(如64QAM),或者在低调制方式(如QPSK)时降低发射功率。功率控制与自适应调制要取得平衡。也就是说对于一个发射台,如果它有良好的信道,在发送功率保持不变的情况下,可使用较高的调制方案如64QAM;如果功率减小,调制方案也就可以相应降低,使用QPSK方式等。自适应调制要求系统必须对信道的性能有及时和精确的了解,如果在差的信道上使用较强的调制方式,那么就会产生很高的误码率,影响系统的可用性。OFDM系统可以用导频信号或参考

10、码字来测试信道的好坏。发送一个已知数据的码字,测出每条信道的信噪比,根据这个信噪比来确定最适合的调制方式。什么是OFDM?OFDM的英文全称为Orthogonal Fre-quency Division Multiplexing,中文含义为正交频分复用技术。这种技术是HPA联盟(HomePlug Powerline Alliance)工业规范的基础,它采用一种不连续的多音调技术,将被称为载波的不同频率中的大量信号合并成单一的信号,从而完成信号传送。由于这种技术具有在杂波干扰下传送信号的能力,因此常常会被利用在容易受外界干扰或者抵抗外界干扰能力较差的传输介质中。其实,OFDM并不是如今发展起来的

11、新技术,OFDM技术的应用已有近40年的历史,主要用于军用的无线高频通信系统。但是,一个OFDM系统的结构非常复杂,从而限制了其进一步推广。直到上世纪70年代,人们采用离散傅立叶变换来实现多个载波的调制,简化了系统结构,使得OFDM技术更趋于实用化。80年代,人们研究如何将OFDM技术应用于高速MODEM。进入90年代以来,OFDM技术的研究深入到无线调频信道上的宽带数据传输。目前OFDM技术已经被广泛应用于广播式的音频、视频领域和民用通信系统,主要的应用包括:非对称的数字用户环路(ADSL)、ETSI标准的数字音频广播(DAB)、数字视频广播(DVB)、高清晰度电视(HDTV)、无线局域网(

12、WLAN)等。正交频分复用(OFDM)技术是一种多载波数字通信调制技术。它由多载波调制(MCM)技术发展而来。美国军方在上世纪60年代就建造了世界上第一个MCM系统,并随后衍生出采用多个子载波和频率重叠技术的OFDM系统。但在之后相当长的一段时间,OFDM技术的发展遇到了很多似乎难于解决的问题。首先,OFDM要求各个子载波之间相互正交,尽管理论上发现采用快速傅立叶变换(FFT)可以很好地实现这种调制方式,但实际上,如此复杂的实时傅立叶变换设备在当时是根本无法完成的。此外,发射机和接收机振荡器的稳定性以及射频功率放大器的线性要求等因素也都是OFDM技术实现的制约条件。20世纪80年代以来,大规模

13、集成电路技术的发展解决了FFT的实现问题,随着DSP芯片技术的发展,格栅编码(TrellisCode)技术、软判决技术(SoftDecision)、信道自适应技术等的应用,OFDM技术开始从理论向实际应用转化。20世纪90年代,OFDM开始被欧洲和澳大利亚应用于广播信道的宽带数据通信、数字音频广播(DAB)、高清晰度数字电视(HDTV)和无线局域网(WLAN)等。此外,还由于其具有更高的频谱利用率和良好的抗多径干扰能力,也被看作第四代移动通信的核心技术之一。OFDM技术良好的性能使得它在很多领域得到了广泛的应用。欧洲的数字音频广播(DAB)系统使用的就是OFDM调制技术。其试验系统已在运行,并

14、且明显地改善了移动中接收无线广播的效果,很快吸引了大量听众。欧洲的一些部门正在开发用于DAB的成套芯片,它将使OFDM接收机的价格大大降低,市场前景非常看好。很多国家的全数字高清晰度电视传输系统(DVBT)也采用了OFDM技术。1997年,欧洲DVBTCOFDM系统是欧洲数字电视广播(DVB)系列标准中的数字地面电视广播系统标准。该系统使用COFDM调制方式,把传输比特分割到数千计的低比特率子载波上。日本1999年提出的地面综合业务数字广播(ISDBT)也采用OFDM技术,即:ISDBTOFDM。从目前的研发情况来看,由于OFDM具有很高的频谱利用率和抗干扰能力,能够很好地满足电视系统的传输要

15、求。在无线局域网领域,IEEE802.11a于1999年通过了一个5GHz的无线局域网标准,其中OFDM调制技术被作为它的物理层标准。ETSI的宽带无线接入网(BRAN)项目HyperLan2也把OFDM定为它的调制标准技术。在未来的宽带接入系统中,OFDM会是一项基本技术。还有很多公司对OFDM与CDMA系统的融合,即MCCDMA很感兴趣。与普通的DSCDMA相比,MCCDMA系统具有很多优点,比如更大的灵活性、高容量、高性能、高抗干扰性等等。随着IEEE802.11a协议、ETSIBRAN和各种多媒体应用对OFDM的引入,世界各国许多大公司和研究团体认识到了OFDM技术的应用前景。1999

16、年,在WiLAN、Philip等公司的邀请下,来自世界六十多家公司的一百多名代表经过讨论成立了一个世界性的组织OFDM论坛,专门讨论OFDM在技术上、市场推广上的各方面问题,进一步推动OFDM技术的商用化。现在OFDM论坛的成员已增加到46个会员,其中15个为主要会员。我国信息产业部也已参加了OFDM论坛。2000年11月,OFDM论坛的固定无线接入工作组向IEEE802.16.3的无线城域网委员会提交了一份建议书,提议采用OFDM技术作为IEEE802.16.3城域网的物理层(PHY)标准。2001年8月31日,信息产业部无线电管理局批准中国网通开展OFDMA固定无线接入系统试验。该试验系统

17、已经开通并进行了必要的测试和业务演示。与目前的各种移动通信技术相比,采用OFDM技术的移动系统的接入速率有很大提高。其下行速率可以达到8Mb/s、上行速率达到512kb/s,接入速率超过了第三代移动通信系统在静止情况下所要求的传送能力。对该试验系统进行的移动性测试表明,终端在移动速度70公里/小时的情况下,接入下行能够保持600kb/s的接入速率。另外从系统无线性能等方面考察,在相邻信道泄漏功率比(ACLR)参数上与3GPP提出的指标相比,性能已经优于3GPP的要求。OFDM技术由于其频谱利用率高、成本低等原因越来越得到人们的关注。随着人们对于通信数据化、宽带化、个人化和移动化的需求,OFDM

18、技术在固定无线接入领域和移动接入领域将越来越得到广泛的应用。OFDM第四代无线通信的技术核心一、绪论 无线通信与个人通信在短短的几十年间经历了从模拟通信到数字通信、从FDMA到CDMA的巨大发展,目前又有新技术出现,比以CDMA为核心的第三代移动通信技术更加完善,我们称之为“第四代移动通信技术”。纵观移动通信的发展史,第一代模拟系统仅提供语音服务,不能传输数据;第二代数字移动通信系统的数据传输速率也只有9.6bit/s,最高可达32kbit/s;第三代移动通信系统数据传输速率可达到2Mbit/s;而我们目前所致力研究的第四代移动通信系统可以达到10Mbit/s至20Mbit/s。虽然第三代移动

19、通信可以比现有传输速率快上千倍,但是仍无法满足未来多媒体通信的要求,第四代移动通信系统的提出便是希望能满足提供更大的频宽需求。第四代移动通信系统计划以OFDM(正交频分复用)为核心技术提供增值服务,它在宽带领域的应用具有很大的潜力。较之第三代移动通信系统,采用多种新技术的OFDM具有更高的频谱利用率和良好的抗多径干扰能力,它不仅仅可以增加系统容量,更重要的是它能更好地满足多媒体通信要求,将包括语音、数据、影像等大量信息的多媒体业务通过宽频信道高品质地传送出去。二、OFDM的发展史OFDM并不是新生事物,它由多载波调制(MCM)发展而来。美国军方早在上世纪的50、60年代就创建了世界上第一个MC

20、M系统,在1970年衍生出采用大规模子载波和频率重叠技术的OFDM系统。但在以后相当长的一段时间,OFDM理论迈向实践的脚步放缓了。由于OFDM的各个子载波之间相互正交,采用FFT实现这种调制,但在实际应用中,实时傅立叶变换设备的复杂度、发射机和接收机振荡器的稳定性以及射频功率放大器的线性要求等因素都成为OFDM技术实现的制约条件。后来经过大量研究,终于在20世纪80年代,MCM获得了突破性进展,大规模集成电路让FFT技术的实现不再是难以逾越的障碍,一些其它难以实现的困难也都得到了解决,自此,OFDM走上了通信的舞台,逐步迈入高速Modem和数字移动通信的领域。20世纪90年代,OFDM开始被

21、欧洲和澳大利亚广泛用于广播信道的宽带数据通信,数字音频广播(DAB)、高清晰度数字电视(HDTV)和无线局域网(WLAN)。随着DSP芯片技术的发展,格栅编码技术、软判决技术、信道自适应技术等成熟技术的应用,OFMD技术的实现和完善指日可待。三、OFDM的基本原理OFDM是一种特殊的多载波传送方案,单个用户的信息流被串/并变换为多个低速率码流(100 Hz 50 kHz),每个码流都用一条载波发送。OFDM弃用传统的用带通滤波器来分隔子载波频谱的方式,改用跳频方式选用那些即便频谱混叠也能够保持正交的波形,因此我们说,OFDM既可以当作调制技术,也可以当作复用技术。在单载波系统中,单个衰落或者干

22、扰可能导致整条链路不可用,但在多载波系统中,只会有一小部分载波受影响。纠错码的应用可以帮助其恢复一些易错载波上的信息。像这样用并行数据传送和频分复用的思路早在20世纪60年代的中期就被提出来了。在传统的并行通信系统中,整个系统频带被划分为N个互不混叠的子信道,每个子信道被一个独立的信源符号调制,即N个子信道被频分复用。这种做法,虽然可以避免不同信道互相干扰但却以牺牲频带利用率为代价,这在频带资源如此紧张的今天尤其不能忍受。上个世纪中期,人们又提出了频带混叠的子信道方案,信息速率为a,并且每个信道之间距离也为a Hz,这样可以避免使用高速均衡和抗突发噪声差错,同时可以充分利用信道带宽,节省了50

23、%。为了减少各个子信道间的干扰,我们希望各个载波间正交。这种“正交”表示的是载波的频率间精确的数学关系。如前所述,传统的频分复用的载波频率之间有一定的保护间隔,通过滤波器接收所需信息。在这样的接收机下,保护频带分隔不同载波频率,这样就使频谱的利用率低。OFDM不存在这个缺点,它允许各载波间频率互相混叠,采用了基于载波频率正交的FFT调制,由于各个载波的中心频点处没有其他载波的频谱分量,所以能够实现各个载波的正交。尽管还是频分复用,但已与过去的FDMA有了很大的不同:不再是通过很多带通滤波器来实现,而是直接在基带处理,这也是OFDM有别于其他系统的优点之一。OFDM的接收机实际上是一组解调器,它

24、将不同载波搬移至零频,然后在一个码元周期内积分,其他载波由于与所积分的信号正交,因此不会对这个积分结果产生影响。OFDM的高数据速率与子载波的数量有关,增加子载波数目就能提高数据的传送速率。OFDM每个频带的调制方法可以不同,这增加了系统的灵活性,大多数通信系统都能提供两种以上的业务来支持多个用户,OFDM适用于多用户的高灵活度、高利用率的通信系统。四、OFDM的主要技术1、调制方式OFDM系统的各个载波可以根据信道的条件来使用不同的调制,比如BPSK、QPSK、8PSK、16QAM、64QAM等等,以频谱利用率和误码率之间的最佳平衡为原则。选择满足一定误码率的最佳调制方式可以获得最大频谱效率

25、。多径信道的频率选择性衰落会导致接收信号功率大幅下降,达到30dB之多,信噪比也大幅下降。使用与信噪比相匹配的调制方式可以提高频谱利用率。众所周知,可靠性是通信系统运行是否良好的重要考核指标,因此系统通常选择BPSK或QPSK调制,这样可以确保在信道最坏条件下的信噪比要求,但是这两种调制的频谱效率太低。如果使用自适应调制,那么在信道好的时候终端就可以使用较高的调制,同样在终端靠近基站时,调制可以由BPSK(1bit/s/Hz)转化成16QAM 64QAM(46 bit/s/Hz),整个系统的频谱利用率得到大幅度的改善,自适应调制能够使系统容量翻番。但任何事物都有其两面性,自适应调制也不例外。它

26、要求信号必需包含一定的开销比特,以告知接收端发射信号所采用的调制方式,并且,终端需要定期更新调制信息,这又势必会增加更多的开销比特。OFDM技术将这个矛盾迎刃而解,通过采用功率控制和自适应调制协调工作的技术。信道好的时候,发射功率不变,可以增强调制方式(如64QAM),或者在低调制(如QPSK)时降低发射功率。功率控制与自适应调制要取得平衡,也就是说对于一个远端发射台,它有良好的信道,若发送功率保持不变,可使用较高的调制方案如64QAM;若功率可以减小,调制方案也相应降低,可使用QPSK。失真、频偏也是在选择调制时必须考虑的因素。传输的非线性会造成互调失真(IMD),此时信号具有较高的噪声电平

27、,信噪比一般不会太高;失步和多普勒平移所造成的频率偏移使信道间失去正交特性,仅仅1的频偏就会造成信噪比下降30dB。信噪比限制了最大频谱利用率只能接近57bit/s/Hz。自适应调制要求对信道的性能有充分的了解,如果在差的信道上使用较强的调制方式,那么就会产生很高的误码率,影响系统的可靠性。多用户OFDM系统的导频信道或参考码字可以用来测试信道的好坏。发送一个已知数据的码字,在满足通信极限的情况下测量出每条信道的信噪比,根据这个信噪比来确定最适合的调制方式。2、信道分配为用户分配信道有多种方式,最主要的两种是分组信道分配、自适应信道分配。2.1 分组信道最简单的方法是将信道分组分配给每个用户,

28、这样可以使由于失真、各信道能量的不均衡和频偏所造成的用户间的干扰最小。但载波分组会使信号容易衰落。载波跳频可以解决这个问题。分组随机跳频空闲时间较短,约11个字符时间。利用时间交织和前向纠错可以恢复丢失的数据,但是会降低系统容量增加信号时延。2.2 自适应跳频这是一种新的基于信道性能的跳频技术。信道用来传递对它来说具有最佳信噪比的信号。因为每个用户的位置不同,所以信号的衰落模式也不相同,因此每个用户收到的最强信号都不同于其他用户,从而相互之间不会发生冲突。初步研究表明,在频率选择性信道采用自适应跳频可以大幅提高信号接收功率,能够达到520dB,令人惊异。事实上,自适应跳频消除了频率选择性衰落。

29、多径信道中,速率为1Gbit/s的信号的频响特性每15cm就会发生很大的变化,因此信号的频率刷新速率要比15cm的移动速率快很多,一般情况下终端每移动5cm刷新一次就足够了。比如终端以每小时60km的速度移动,刷新速率就是大约330次/秒。跳频的开销比特数量与用户速率、用户数量以及系统是全双工还是半双工有关。全双工系统的接收机和发射机的工作频率的间隔至少应大于40MHz,信道数量是用户数的两倍,发射的参考码字的数量比用户数多1个,也就是说除了每个用户需要发送一个参考码字外,基站的前向信道也必需发送一个。采用并行通信可以减少参考码字,20个用户可以共用一个参考码字。对于一个10Mbit/s带宽全

30、双工系统,有100个速率为50kbit/s的用户,调制方式是QPSK,其开销比特将占整个数据的30%50%。而时分半双工系统可以减少开销比特,只有10%15%。当信道变化太快,跳频速度跟不上时,用随机跳频代替自适应跳频。由于这种转换非常快,所以衰落时间很短暂,采用时间交错和前向纠错能够补偿这种衰落。时间交错要求尽可能短,否则会增加时延。3多天线ODFM由于码率低和加入了时间保护间隔而具有极强的抗多径干扰能力。由于多径时延小于保护间隔,所以系统不受码间干扰的困扰,这就允许单频网络(SFN)可以用于宽带OFDM系统,依靠多天线来实现,即采用由大量低功率发射机组成的发射机阵列消除阴影效应,来实现完全覆盖。

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1