ImageVerifierCode 换一换
格式:DOCX , 页数:25 ,大小:140.94KB ,
资源ID:17604623      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/17604623.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(因式分解教案Word文档下载推荐.docx)为本站会员(b****6)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

因式分解教案Word文档下载推荐.docx

1、 (1)ma+mb+mc= ; (2)3x2-3x= ; (3)m2-16= ; (4)a3-a= ; (5)y2-6y+9= 三、梳理比较以下两种运算的联系与区别:(1) a(a+1)(a-1)= a3-a(2) a3-a= a(a+1)(a-1)在第三环节的运算中还有其它类似的例子吗?除此之外,你还能找到类似的例子吗?结论:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解辨一辨:下列变形是因式分解吗?为什么?(1)a+b=b+a (2)4x2y8xy2+1=4xy(xy)+1(3)a(ab)=a2ab (4)a22ab+b2=(ab)2通过学生的讨论,使学生更清楚以下事

2、实: (1)分解因式与整式的乘法是一种互逆关系; (2)分解因式的结果要以积的形式表示; (3)每个因式必须是整式,且每个因式的次数都必须低于原来的多项式的次数; (4)必须分解到每个多项式不能再分解为止学生通过讨论,能找出分解因式与整式的乘法的联系与区别,基本清楚了“分解因式与整式的乘法是一种互逆关系”以及“分解因式的结果要以积的形式表示”这两种事实,后两种事实是在老师的引导与启发下才能完成四、应用.例1 下列各式从左到右的变形哪些是分解因式?哪些是整式乘法 (1) -4=(x+2y)(x-2y) (2) 2x(x-3y)=2-6xy (3) =25-10a+1 (4) +4x+4=(5)

3、(a-3)(a+3)=-9 (6)- 4=(m+2)(m-2) (7)2R+ 2r= 2(R+r)解:(1)(4)(6)(7)是分解因式, (2)(3)(5)是整式的乘法.例2 已知可以分解为 ,求的值.思路导航:利用因式分解与整式乘法互为逆运算的关系,可知,分解前后的两个代数式是相等的,所以可以利用整式乘法解决此题.=-15五、评价:随堂练习1、2题六、课堂小结从今天的课程中,你学到了哪些知识?掌握了哪些方法?明白了哪些道理?七、巩固练习:课本第45页习题2.1第1,2,3题思考题:课本第45页习题2.1第4题(给学有余力的同学做)教学反思2提公因式法(一)(1)使学生经历探索寻找多项式各项

4、的公因式的过程,能确定多项式各项的公因式; (2)会用提取公因式法进行因式分解(二)能力目标:(1)由学生自主探索解题途径,在此过程中,通过观察、对比等手段,确定多项式各项的公因式,加强学生的直觉思维,渗透化归的思想方法,培养学生的观察能力;(2)由乘法分配律的逆运算过渡到因数分解,再由单项式与多项式的乘法运算过渡到因式分解,进一步发展学生的类比思想;(3)寻找出确定多项式各项的公因式的一般方法,培养学生的初步归纳能力进一步培养学生的矛盾对立统一的哲学观点以及实事求是的科学态度1.能准确找出多项式中含有的公因式(公因式是单项式);2.能灵活运用提公因式法分解因式灵活运用提公因式法分解因式。一、

5、问题、计算:用什么方法计算的?这个式子的各项有相同的因数吗?利用乘法的分配律进行逆运算的方法很熟悉,能很快找到这个式子各项有的相同因数,在提出公因数后,很快得出这一题的计算结果是7二、探究 想一想:多项式 ab+ac中,各项有相同的因式吗?多项式 x2+4x呢?多项式mb2+nbb呢?多项式中各项都含有的相同因式,叫做这个多项式各项的公因式多项式2x2y+6x3y2中各项的公因式是什么?(1)各项系数是整数,系数的最大公约数是公因式的系数; (2)各项都含有的字母的最低次幂的积是公因式的字母部分; (3)公因式的系数与公因式字母部分的积是这个多项式的公因式将以下多项式写成几个因式的乘积的形式:

6、(1)ab+ac (2)x2+4x (3)mb2+nbb如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法四、应用例1、将下列多项式进行分解因式:(1)3x+6 (2)7x221x (3)8a3b212ab3c+ab (4)24x312x2+28x归纳:提取公因式的步骤: (1)找公因式; (2)提公因式易出现的问题:(1)第(3)题中的最后一项提出ab后,漏掉了“+1”; (2)第(4)题提出“”时,后面的因式不是每一项都变号矫正对策:(1)因式分解后括号内的多项式的项数与原多项式的项数是否相同; (2)如果多项

7、式的第一项带“”,则先提取“”号,然后提取其它公因式; (3)将分解因式后的式子再进行单项式与多项式相乘,其积是否与原式相等例2 将下列各式分解因式:(2)(4)提取公因式,首先应取各项系数的最大公约数,字母取各项都含有的相同字母,字母的指数取各项中的最低次,当首项系数为负时,通常先把负号提到括号外;如果多项式中有系数为分数,通常先把分数提到括号外,使得括号内的各项系数是整数,再进行分解因式(1)原式(2)原式=(3)原式=(4)原式=五、评价1、找出下列各多项式的公因式:(1)4x+8y (2)am+an (3)48mn24m2n3 (4)a2b2ab2+ab 2、将下列多项式进行分解因式:

8、 (1)8x72 (2)a2b5ab (3)4m38m2(4)a2b2ab2+ab(5)48mn24m2n3 (6)2x2y+4xy22xy六、课堂小结:你认为提公因式法与单项式乘多项式有什么关系?任何找多项式的公因式七、课后练习:课本第49页习题22第1,2,3题2提公因式法(二)(1)使学生经历从简单到复杂的螺旋式上升的认识过程(1)培养学生的直觉思维,渗透化归的思想方法,培养学生的观察能力(2)从提取的公因式是一个单项式过渡到提取的公因式是多项式,进一步发展学生的类比思想通过观察能合理地进行分解因式的推导,并能清晰地阐述自己的观点1.能准确找出多项式中含有的公因式(公因式是多项式);体会

9、并运用整体的数学思想方法.讲练结合。一 、问题把下列各式因式分解: (1)am+an (2)a2b5ab (3)m2n+mn2mn (4)2x2y+4xy22xy回顾上一节课提取公因式的基本方法与步骤想一想:因式分解:a(x3)+2b(x3)由于题中很显明地表明,多项式中的两项都存在着(x3),通过观察,容易找到公因式是(x3),并能顺利地进行因式分解做一做在下列各式等号右边的括号前插入“+”或“”号,使等式成立: (1)2a= (a2) (2)yx= (xy) (3)b+a= (a+b) (4)(ba)2= (ab)2 (5)mn= (m+n) (6)s2+t2= (s2t2)注意点:(1)

10、首先注意分清前后两个多项式的底数部分是相等关系还是互为相反数的关系; (2)当前后两个多项式的底数相等时,则只要在第二个式子前添上“+”; (3)当前后两个多项式的底数部分是互为相反数时,如果指数是奇数,则在 第二个式子前添上“”;如果指数是偶数,则在第二个式子前添上“+”例1、将下列各式因式分解:(1)a(xy)+b(yx) (2)3(mn)36(nm)2 进一步引导学生采用类比的方法由提取的公因式是单项式类比出提取的公因式是多项式的方法与步骤(1)观察多项式中括号内不同符号的多项式部分,并把它们转换成符号相同的多项式;(2)再把相同的多项式作为公因式提取出来例2 分解因式: (2) 思路导

11、航:公因式可以是一个单项式,也可以是一个多项式,注意符号的变化规律:, = 例3 已知一个四边形ABCD的四条边顺次为a、b、c、d,且(a2+ab)-(ac+bc)=0,(b2+bc)-(bd+cd)=0,那么四边形ABCD是( )A平行四边形 B. 矩形 C. 菱形 D. 梯形利用提公因式法,把两个等式的左边转化为乘积形式. (a2+ab)-(ac+bc)=0 得a(a+b)-c(a+b)=0 (a+b)(a-c)=0a、b、c是四边形的边长,a+b0,a-c=0,即a=c;(b2+bc)-(bd+cd)=0得b(b+c)-d(b+c)=0 (b+c)(b-d)=0b、c、d是四边形的边长

12、,b+c0,b-d=0,即b=d两组对边分别相等,故四边形是平行四边形,选A.1、填一填: (1)3+a= (a+3) (2)1x= (x1) (3)(mn)2= (nm)2 (4)m2+2n2= (m22n2)2、把下列各式因式分解: (1)x(a+b)+y(a+b) (2)3a(xy)(xy) (3)6(p+q)212(q+p) (4)a(m2)+b(2m) (5)2(yx)2+3(xy) (6)mn(mn)m(nm)23、把(abc)(abc)(bac)(bac)分解因式解析:如果采用提取公因式的方法,必须先把所有括号内的多项式中字母a前面的符号都化为正号,再进行观察比较可以找出公因式(

13、abc) 掌握了哪些方法?提取的公因式是多项式应该采取的方法课本第52页习题23第1,2题思考题:第3题(给学有余力的同学做)3运用公式法(一)(一)知识与技能:(1)使学生了解运用公式法分解因式的意义; (2)会用平方差公式进行因式分解; (3)使学生了解提公因式法是分解因式首先考虑的方法,再考虑用平方差公式分解因式(二)数学能力: (1)发展学生的观察能力和逆向思维能力; (2)培养学生对平方差公式的运用能力在引导学生逆用乘法公式的过程中,培养学生逆向思维的意识,同时让学生了解换元的思想方法 1.能够运用平方差公式来分解因式. 2.体会逆向思维和提高推理能力. 提公因式法与平方差公式分解因

14、式综合应用。讲练结合一、问题填空: (1)(x+3)(x3) = ;(2)(4x+y)(4xy)= ;(3)(1+2x)(12x)= ;(4)(3m+2n)(3m2n)= 根据上面式子填空:(1)9m24n2= ;(2)16x2y2= ;(3)x29= ;(4)14x2= 通过观察、对比,把整式乘法中的平方差公式进行逆向运用就得到因式分解的平方差公式。 想一想观察上述第二组式子的左边有什么共同特征?把它们写成乘积形式以后又有什么共同特征?a2b2=(a+b)(ab)三、应用例1、把下列各式因式分解: (1)2516x2 (2)9a2例2、将下列各式因式分解:(1)9(xy)2(x+y)2 (2

15、)2x38x (1)让学生理解在平方差公式a2b2=(a+b)(ab)中的a与b不仅可以表示单项式,也可以表示多项式,向学生渗透换元的思想方法;(2)使学生清楚地知道提公因式法是分解因式首先考虑的方法,再考虑用平方差公式分解因式例3、 分解下列因式(1)8-2 (2) (3)(4)16(1)(2)式先提公因式,再应用平方差公式分解;(3)式先把分数提出来,使系数变为整数,便于用平方差公式分解;(4)式注意:,(1)原式= =四、评价:随堂练习1、2、3五、课堂小结: (1)有公因式(包括负号)则先提取公因式;(2)整式乘法的平方差公式与因式分解的平方差公式是互逆关系;(3)平方差公式中的a与b

16、既可以是单项式,又可以是多项式;六、课后练习:课本第56页习题24第1、2、3题3运用公式法(二) (2)会用完全平方公式进行因式分解; (3)使学生清楚地知道提公因式法是分解因式的首先考虑的方法,再考虑用平方差公式或完全平方公式进行分解因式(1)发展学生的观察能力和逆向思维能力;(2)培养学生对完全平方公式的运用能力通过观察,推导分解因式与整式乘法的关系,让学生感受事物间的因果联系 1.能够运用完全平方公式来分解因式;2.应用“一提二套”的步骤来分解因式。选择适当方法进行因式分解教学过程 (1)(a+b)(a-b) = ;(2)(a+b)2= ;(3)(ab)2= ;(1)a2b2= ;(2

17、)a22ab+b2= ;(3)a2+2ab+b2= ;结 论:形如a2+2ab+b2 与a22ab+b2的式子称为完全平方式二、探究 观察下列哪些式子是完全平方式?如果是,请将它们进行因式分解 (1)x24y2 (2)x2+4xy4y2 (3)4m26mn+9n2 (4)m2+6mn+9n2找完全平方式可以紧扣下列口诀:首平方、尾平方,首尾相乘两倍在中央;完全平方式可以进行因式分解, a22ab+b2=(ab)2 a2+2ab+b2=(a+b)2例: (1)x24x+4 (2)9a2+6ab+b2(3)m2 (4)例2 若,则xy_观察等式左边有项,项,联想完全平方公式,用“配方法”求解.即,

18、故例3将下列各式因式分解:(1)3ax2+6axy+3ay2 (2)x24y2+4xy 在综合应用提公因式法和公式法分解因式时,一般按以下两步完成:(1)有公因式,先提公因式;(2)再用公式法进行因式分解.四、评价1、判断正误: (1)x2+y2=(x+y)2 ( ) (2)x2y2= (xy)2 ( ) (3)x22xyy2= (xy)2 ( ) (4)x22xyy2=(x+y)2 ( )2、下列多项式中,哪些是完全平方式?请把是完全平方式的多项式分解因式: (1)x2x+ (2)9a2b23ab+13、把下列各式因式分解: (1)m212mn+36n2 (2)16a4+24a2b2+9b4

19、 (3)2xyx2y2 (4)412(xy)+9(xy)2五、课堂小结你认为分解因式中的平方差公式以及完全平方公式与乘法公式有什么关系? 结论:由分解因式与整式乘法的关系可以看出,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法注意(1)有公因式则先提取公因式;(2)整式乘法的完全平方公式与因式分解的完全平方公式是互逆关系;(3)完全平方公式中的a与b既可以是单项式,又可以是多项式;课本第60页习题25第1、2、3题;习题25第4题(给学有余力的同学做)3运用公式法(三)(1)使学生进一步了解分解因式的意义及几种因式分解的常用方法;(2)提高学生因式分

20、解的基本运算技能; (3)能熟练使用几种因式分解方法的综合运用(1)发展学生对因式分解的应用能力,提高解决问题的能力;(2)注重学生对因式分解的理解,发展学生分析问题的能力和推理能力通过因式分解综合练习和开放题练习,提高学生观察、分析问题的能力,培养学生的开放意识;通过认识因式分解在实际生活中的应用,培养学生运用数学知识解决实际问题的意识1.能够综合运用提公因式法、平方差公式、完全平方公式来分解因式;2.应用“一提二套三检查”的步骤来分解因式。3能应用因式分解简化计算。因式分解综合运用。1、你学过哪些因式分解的方法?举一个例子说明其中用到了哪些方法?2、你认为分解因式与整式的乘法之间有什么关系

21、?1、下列哪些式子的变形是因式分解? (1)x24y2=(x+2y)(x2y) (2)x(3x+2y)=3x2+2xy (3)4m26mn+9n2 =2m(2m3n)+9n2 (4)m2+6mn+9n2=(m+3n)2 (1)x2+14x+49 (2)7x263(3)y29(x+y)2 (4)(x+y)214(x+y)+49(5)16(2a+3b)2 (6)(7)a48a2b2+16b4 (8)(a2+4)216a2例1 分解因式:按照“一提二套三检查”的步骤去分解因式.原式=按照“一提二套三检查”的步骤去分解因式. 例3 分解因式:设,则原式=四、梳理式子反复出现,可考虑把它视为一个整体用另

22、一字母去表示,然后再按照“一提二套三检查”的步骤去分解因式.这种方法叫换元法。1、3200432003 2、(2)101+(2)1003、已知x+y=1,求的值4、把下列各式因式分解:(1)x3y24x (2)a32a2b+ab2 (3)a3+2a2+a (4)(xy)24(x+y)25、填空: (1)若一个正方形的面积是9x2+12xy+4y2,则这个正方形的边长是 ; (2)当k= 时,100x2kxy+49y2是一个完全平方式; (3)计算:20062262006+36= ;6、利用因式分解计算:课本第61页复习题第2题;第62页第3题,第4题;第62页第9题课本第63页联系拓广第13、

23、14题(给学有余力的同学做)运用分组分解法分解因式(1)使学生了解分组分解法分解因式的意义; (2)会用分组分解法进行因式分解; (3)使学生清楚地知道提公因式法是分解因式的首先考虑的方法,再考虑用平方差公式或完全平方公式进行分解因式,最后考虑分组分解法。(1)发展学生的观察能力和综合思维能力;(2)培养学生分组分解法的灵活运用能力通过观察、推导,让学生感受事物间的内在联系及因果关系 培养学生的自查、自纠、自评能力以及互助合作的精神。掌握分组分解法的分组原则。合理选择分组方法。1.我们已学过的因式分解的方法有哪些?2、分解因式:(1) a2-ab (2) -10ay+5by (3) a(m+n

24、)+b(m+n) (4) (x2-y2)+a(x+y) (5)(a-b)2-c2 (6) am+an (7) bm+bn 二、探究:思考:已知多项式am+an+bm+bn(1)这个多项式有公因式吗?如果有,是什么?(2)这个多项式分组后有公因式吗?应怎样分组?(3)分组后能分解因式吗?怎样分解?(4)本题还有没有其他分组的办法?若有,怎样分组?法一:am+an+bm+bn=(am+an)+(bm+bn)= a(m+n)+b(m+n)=(m+n)(a +b)法二:am+an+bm+bn=( am +bm)+(an +bn)= m(a+b)+n(a+b)= (a +b)(m+n)总结:利用分组来分解因式的方法叫做分组分解法。如果把一个多项式的各项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以用先分

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1