ImageVerifierCode 换一换
格式:DOCX , 页数:20 ,大小:248.93KB ,
资源ID:1760197      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/1760197.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(计量经济学复习要点1.docx)为本站会员(b****1)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

计量经济学复习要点1.docx

1、计量经济学复习要点1计量经济学复习要点参考教材:伍德里奇 计量经济学导论第1章 绪论数据类型:截面、时间序列、面板用数据度量因果效应,其他条件不变的概念习题:C1、C2第2章 简单线性回归 回归分析的基本概念,常用术语现代意义的回归是一个被解释变量对若干个解释变量依存关系的研究,回归的实质是由固定的解释变量去估计被解释变量的平均值。简单线性回归模型是只有一个解释变量的线性回归模型。 回归中的四个重要概念1. 总体回归模型(Population Regression Model,PRM)-代表了总体变量间的真实关系。2. 总体回归函数(Population Regression Function

2、,PRF)-代表了总体变量间的依存规律。3. 样本回归函数(Sample Regression Function,SRF)-代表了样本显示的变量关系。4. 样本回归模型(Sample Regression Model,SRM)-代表了样本显示的变量依存规律。 总体回归模型与样本回归模型的主要区别是:描述的对象不同。总体回归模型描述总体中变量y与x的相互关系,而样本回归模型描述所关的样本中变量y与x的相互关系。建立模型的依据不同。总体回归模型是依据总体全部观测资料建立的,样本回归模型是依据样本观测资料建立的。模型性质不同。总体回归模型不是随机模型,而样本回归模型是一个随机模型,它随样本的改变而改

3、变。 总体回归模型与样本回归模型的联系是:样本回归模型是总体回归模型的一个估计式,之所以建立样本回归模型,目的是用来估计总体回归模型。线性回归的含义线性:被解释变量是关于参数的线性函数(可以不是解释变量的线性函数)线性回归模型的基本假设简单线性回归的基本假定:对模型和变量的假定、对随机扰动项u的假定(零均值假定、同方差假定、无自相关假定、随机扰动与解释变量不相关假定、正态性假定)普通最小二乘法(原理、推导)最小二乘法估计参数的原则是以“残差平方和最小”。Min : , OLS的代数性质拟合优度R2离差平方和的分解:TSS=ESS+RSS“拟合优度”是模型对样本数据的拟合程度。检验方法是构造一个

4、可以表征拟合程度的指标判定系数又称决定系数。 (1),表示回归平方和与总离差平方和之比;反映了样本回归线对样本观测值拟合优劣程度的一种描述; (2) ; (3) 回归模型中所包含的解释变量越多,越大!改变度量单位对OLS统计量的影响函数形式(对数、半对数模型系数的解释)(1):X变化一个单位Y的变化(2): X变化1%,Y变化%,表示弹性。(3):X变化一个单位,Y变化百分之100(4):X变化1%,Y变化%。OLS无偏性,无偏性的证明OLS估计量的抽样方差误差方差的估计OLS估计量的性质(1)线性:是指参数估计值和分别为观测值的线性组合。(2)无偏性:是指和的期望值分别是总体参数和。(3)最

5、优性(最小方差性):是指最小二乘估计量和在在各种线性无偏估计中,具有最小方差。高斯-马尔可夫定理OLS参数估计量的概率分布OLS随机误差项的方差2的估计简单回归的高斯马尔科夫假定对零条件均值的理解习题:4、5、6;C2、C3、C4第3章 多元回归分析:估计1、变量系数的解释(剔除、控制其他因素的影响) 对斜率系数的解释:在控制其他解释变量(X2)不变的条件下,X1变化一个单位对Y的影响;或者,在剔除了其他解释变量的影响之后,X1的变化对Y的单独影响!2、多元线性回归模型中对随机扰动项u的假定,除了零均值假定、同方差假定、无自相关假定、随机扰动与解释变量不相关假定、正态性假定以外,还要求满足无多

6、重共线性假定。3、多元线性回归模型参数的最小二乘估计式;参数估计式的分布性质及期望、方差和标准误差;在基本假定满足的条件下,多元线性回归模型最小二乘估计式是最佳线性无偏估计式。最小二乘法 (OLS) 公式: 估计的回归模型:的方差协方差矩阵: 残差的方差 : 估计的方差协方差矩阵是: 拟合优度遗漏变量偏误多重共线性多重共线性的概念多重共线性的后果多重共线性的检验多重共线性的处理习题:1、2、6、7、8、10;C2、C5、C6第4章 多元回归分析:推断经典线性模型假定正态抽样分布变量显著性检验,t检验 检验值的其他假设P值实际显著性与统计显著性检验参数的一个线性组合假设多个线性约束的检验:F检验

7、理解排除性约束报告回归结果习题:1、2、3、4、6、7、10、11;C3、C5、C8第6章 多元回归分析:专题测度单位对OLS统计量的影响进一步理解对数模型二次式的模型交互项的模型拟合优度修正可决系数的作用和方法。习题:1、3、4、7;C2、C3、C5、C9、C12第7章 虚拟变量虚拟变量的定义如何引入虚拟变量:如果一个变量分成N组,引入该变量的虚拟变量形式是只能放入N-1个虚拟变量虚拟变量系数的解释虚拟变量系数的解释:不同组均值的差(基准组或对照组与处理组)以下几种模型形式表达的不同含义; 1):截距项不同;2):斜率不同;3):截距项与斜率都不同;其中D是二值虚拟变量,X是连续的变量。虚拟

8、变量陷阱虚拟变量的交互作用习题:2、4、9;C2、C3、C6、C7、C11第8章 异方差异方差的后果异方差稳健标准误BP检验异方差的检验(White检验)加权最小二乘法习题:1、2、3、4;C1、C2、C8、C9Eviews回归结果界面解释表英文名称中文名称常用计算公式常用相互关系和判断准则Variable变量Coefficient系数Sta.Error标准差一般是绝对值越小越好t-statisticT检验统计量绝对值大于2时可粗略判断系数通过t检验ProbT统计量的P值P值小于给定显著水平时系数通过t检验RsquaredAjusted RsquaredS.E. of regression扰动

9、项标准差Sum squared resid残差平方和Log likelihood似然函数对数值Durbin-Watson statDW统计量Mean dependent var应变量样本均值S.D. dependent var应变量样本标准差Akaike info criterionAIC准则一般是越小越好Schwarz criterionSC准则一般是越小越好F-statisticF统计量Prob(F-statistic)F统计量的P值P值小于给定显著水平时模型通过F检验计量经济学复习题第1章习题:C1、C2第2章习题:4、5、6;C2、C3、C4第3章习题:1、2、6、7、8、10;C2、

10、C5、C6第4章习题:1、2、3、4、6、7、10、11;C3、C5、C8第6章习题:1、3、4、7;C2、C3、C5、C9、C12第7章习题:2、4、9;C2、C3、C6、C7、C11第8章习题:1、2、3、4;C1、C2、C8、C91、判断下列表达式是否正确2、给定一元线性回归模型: (1)叙述模型的基本假定;(2)写出参数和的最小二乘估计公式; (3)说明满足基本假定的最小二乘估计量的统计性质;(4)写出随机扰动项方差的无偏估计公式。3、对于多元线性计量经济学模型: (1)该模型的矩阵形式及各矩阵的含义;(2)对应的样本线性回归模型的矩阵形式;(3)模型的最小二乘参数估计量。4、根据美国

11、1961年第一季度至1977年第二季度的数据,我们得到了如下的咖啡需求函数的回归方程: (-2.14) (1.23) (0.55) (-3.36) (-3.74) (-6.03) (-0.37)其中,Q=人均咖啡消费量(单位:磅);P=咖啡的价格(以1967年价格为不变价格);I=人均可支配收入(单位:千元,以1967年价格为不变价格);=茶的价格(1/4磅,以1967年价格为不变价格);T=时间趋势变量(1961年第一季度为1,1977年第二季度为66);D1=1:第一季度;D2=1:第二季度;D3=1:第三季度。请回答以下问题:1 模型中P、I和的系数的经济含义是什么?2 咖啡的需求是否很

12、有弹性?3 咖啡和茶是互补品还是替代品?4 你如何解释时间变量T的系数?5 你如何解释模型中虚拟变量的作用?6 哪一个虚拟变量在统计上是显著的?7 咖啡的需求是否存在季节效应?5、为研究体重与身高的关系,我们随机抽样调查了51名学生(其中36名男生,15名女生),并得到如下两种回归模型: (5.1)t=(-5.2066) (8.6246) (5.2)t=(-2.5884) (4.0149) (5.1613)其中,W(weight)=体重 (单位:磅);h(height)=身高 (单位:英寸)请回答以下问题:1 你将选择哪一个模型?为什么?2 如果模型(5.2)确实更好,而你选择了(5.1),你

13、犯了什么错误? D的系数说明了什么?6、简述异方差对下列各项有何影响:(1)OLS估计量及其方差;(2)置信区间;(3)显著性t检验和F检验的使用。(4)预测。7、假设某研究者基于100组三年级的班级规模(CS)和平均测试成绩(TestScore)数据估计的OLS回归为: (1) 若某班级有22个学生,则班级平均测试成绩的回归预测值是多少?(2) 某班去年有19个学生,而今年有23个学生,则班级平均测试成绩变化的回归预测值是多少?(3) 100个班级的样本平均班级规模为21.4,则这100个班级的样本平均测试成绩是多少?(4) 100个班级的测试成绩样本标准差是多少?(提示:利用R2和SER的

14、公式)(5) 求关于CS的回归斜率系数的95%置信区间。(6) 计算t统计量,根据经验法则(t=2)来判断显著性检验的结果。8、设从总体中抽取一容量为200的20岁男性随机样本,记录他们的身高和体重。得体重对身高的回归为:其中体重的单位是英镑,身高的单位是英寸。(1) 身高为70英寸的人,其体重的回归预测值是多少?65英寸的呢?74英寸的呢?(2) 某人发育较晚,一年里蹿高了1.5英寸。则根据回归预测体重增加多少?(3) 解释系数值-99.41和3.94的含义。(4) 假定不用英镑和英寸度量体重和身高而分别用厘米和千克,则这个新的厘米-千克回归估计是什么?给出所有结果,包括回归系数估计值,R2和SER。(5) 基于回归方程,能对一个3岁小孩的体重(假设身高1米)作出可靠预测吗?9、假设某研究使用250名男性和280名女性工人的工资(Wage)数据估计出如下OLS回归: (标准误)(0.23)(0.36)其中WAGE的单位是美元/小时,Male为男性=1,女性=0的虚拟变量。用男性和女性的平均收入之差定义工资的性别差距。(1)性别差距的估计值是多少?(2)计算截距项和Male系数的t统计量,估计出的性别差距统计显著不为0吗?(5%显著水平的t统计量临界值为1.9

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1