ImageVerifierCode 换一换
格式:DOCX , 页数:17 ,大小:32.44KB ,
资源ID:17539565      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/17539565.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《数学奥林匹克专题讲座》七Word文档下载推荐.docx)为本站会员(b****6)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

《数学奥林匹克专题讲座》七Word文档下载推荐.docx

1、显然,在27个小正方体中,14个是黑的,13个是白的。甲虫从中间的白色小正方体出发,每走一步,方格就改变一种颜色。故它走27步,应该经过14个白色的小正方体、13个黑色的小正方体。因此在27步中至少有一个小正方体,甲虫进去过两次。由此可见,如果要求甲虫到每一个小正方体只去一次,那么甲虫不能走遍所有的小正方体。例3 88的国际象棋棋盘能不能被剪成7个22的正方形和9个41的长方形?如果可以,请给出一种剪法;如果不行,请说明理由。如下图,对88的棋盘染色,则每一个41的长方形能盖住2白2黑小方格,每一个22的正方形能盖住1白3黑或3白1黑小方格。推知7个正方形盖住的黑格总数是一个奇数,但图中的黑格

2、数为32,是一个偶数,故这种剪法是不存在的。例4 在平面上有一个2727的方格棋盘,在棋盘的正中间摆好81枚棋子,它们被摆成一个99的正方形。按下面的规则进行游戏:每一枚棋子都可沿水平方向或竖直方向越过相邻的棋子,放进紧挨着这枚棋子的空格中,并把越过的这枚棋子取出来。问:是否存在一种走法,使棋盘上最后恰好剩下一枚棋子?如下图,将整个棋盘的每一格都分别染上红、白、黑三种颜色,这种染色方式将棋盘按颜色分成了三个部分。按照游戏规则,每走一步,有两部分中的棋子数各减少了一个,而第三部分的棋子数增加了一个。这表明每走一步,每个部分的棋子数的奇偶性都要改变。因为一开始时,81个棋子摆成一个99的正方形,显

3、然三个部分的棋子数是相同的,故每走一步,三部分中的棋子数的奇偶性是一致的。如果在走了若干步以后,棋盘上恰好剩下一枚棋子,则两部分上的棋子数为偶数,而另一部分的棋子数为奇数,这种结局是不可能的,即不存在一种走法,使棋盘上最后恰好剩下一枚棋子。例5 图1是由数字0,1交替构成的,图2是由图1中任选减1,如此反复多次形成的。图2中的A格上的数字是多少?如左下图所示,将88方格黑白交替地染色。此题允许右上图所示的6个操作,这6个操作无论实行在哪个位置上,白格中的数字之和减去黑格中的数字之和总是常数。所以图1中白格中的数字之和减去黑格中的数字之和,与图2中白格中的数字之和减去黑格中的数字之和相等,都等于

4、32,由(31A)-32=32,得出A=33。例6 有一批商品,每件都是长方体形状,尺寸是124。现在有一批现成的木箱,内空尺寸是666。能不能用这些商品将木箱填满?我们用染色法来解决这个问题。先将66的木箱分成216个小正方体,这216个小正方体,可以组成27个棱长为2的正方体。我们将这些棱长为2的正方体按黑白相间涂上颜色(如下图)。容易计算出,有14个黑色的,有13个白色的。现在将商品放入木箱内,不管怎么放,每件商品要占据8个棱长为1的小正方体的空间,而且其中黑、白色的必须各占据4个。现在白色的小正方体共有813=104(个),再配上104个黑色的小正方体,一共可以放26件商品,这时木箱余

5、下的是8个黑色小正方体所占据的空间。这8个黑色的小正方体的体积虽然与一件商品的体积相等,但是容不下这件商品。因此不能用这些商品刚好填满。例7 6个人参加一个集会,每两个人或者互相认识或者互相不认识。证明:存在两个“三人组”,在每一个“三人组”中的三个人,或者互相认识,或者互相不认识(这两个“三人组”可以有公共成员)。证明:将每个人用一个点表示,如果两人认识就在相应的两个点之间连一条红色线段,否则就连一条蓝色线段。本题即是要证明在所得的图中存在两个同色的三角形。设这六个点为A,B,C,D,E,F。我们先证明存在一个同色的三角形:考虑由A点引出的五条线段AB,AC,AD,AE,AF,其中必然有三条

6、被染成了相同的颜色,不妨设AB,AC,AD同为红色。再考虑BCD的三边:若其中有一条是红色,则存在一个红色三角形;若这三条都不是红色,则存在一个蓝色三角形。下面再来证明有两个同色三角形:不妨设ABC的三条边都是红色的。若DEF也是三边同为红色的,则显然就有两个同色三角形;若DEF三边中有一条边为蓝色,设其为DE,再考虑DA,DB,DC三条线段:若其中有两条为红色,则显然有一个红色三角形;若其中有两条是蓝色的,则设其为DA,DB。此时在EA,EB中若有一边为蓝色,则存在一个蓝色三角形;而若两边都是红色,则又存在一个红色三角形。故不论如何涂色,总可以找到两个同色的三角形。二、赋值法将问题中的某些对

7、象用适当的数表示之后,再进行运算、推理、解题的方法叫做赋值法。许多组合问题和非传统的数论问题常用此法求解。常见的赋值方式有:对点赋值、对线段赋值、对区域赋值及对其他对象赋值。例8 一群旅游者,从A村走到B村,路线如下图所示。怎样走才能在最短时间内到达B村?图中的数字表示走这一段路程需要的时间(单位:分)。我们先把从A村到各村的最短时间标注在各村的旁边,从左到右,一一标注,如下图所示。由此不难看出,按图中的粗黑线走就能在最短时间(60分钟)内从A村走到B村。例9 把下图中的圆圈任意涂上红色或蓝色。有无可能使得在同一条直线上的红圈数都是奇数?请说明理由。假设题中所设想的染色方案能够实现,那么每条直

8、线上代表各点的数字之和便应都是奇数。一共有五条直线,把这五条直线上代表各点的数字之和的这五个奇数再加起来,得到的总和数仍应是一个奇数。但是,由观察可见,图中每个点都恰好同时位于两条直线上,在求上述总和数时,代表各点的数字都恰被加过两次,所以这个总和应是一个偶数。这就导致矛盾,说明假设不成立,染色方案不能实现。例10 平面上n(n2)个点A1,A2,An顺次排在同一条直线上,每点涂上黑白两色中的某一种颜色。已知A1和An涂上的颜色不同。相邻两点间连接的线段中,其两端点不同色的线段的条数必为奇数。赋予黑点以整数值1,白点以整数值2,点Ai以整数值为ai,当Ai为黑点时,ai=1,当Ai为白点时,a

9、i=2。再赋予线段AiAi+1以整数值ai+ai+1,则两端同色的线段具有的整数值为2或4,两端异色的线段具有的整数值为3。所有线段对应的整数值的总和为(a1a2)(a2a3)(a3a4)(an-1an)a1an2(a2a3an-1)212(a2a3an-1)奇数。设具有整数值2,3,4的线段的条数依次为l,m,n,则2lm4n=奇数。由上式推知,m必为奇数,证明完毕。例11 下面的表1是一个电子显示盘,每一次操作可以使某一行四个字母同时改变,或者使某一列四个字母同时改变。改变的规则是按照英文字母的顺序,每个英文字母变成它的下一个字母(即A变成B,B变成CZ变成A)。能否经过若干次操作,使表1

10、变为表2?如果能,请写出变化过程,如果不能,请说明理由。S O B RK B D ST Z F P H E X GH O C N R T B SA D V X C F Y A 表1 表2不能。将表中的英文字母分别用它们在字母表中的序号代替(即A用1,B用2Z用26代替)。这样表1和表2就分别变成了表3和表4。每一次操作中字母的置换相当于下面的置换:12,23,2526,261。19 1521820 266168 15 3141 4 2224表31124198 5247 1820 2193625 1表4容易看出,每次操作使四个数字改变了奇偶性,而16个数字的和的奇偶性没有改变。因为表3中16个数

11、字的和为213,表4中16个数字的和为174,它们的奇偶性不同,所以表3不能变成表4,即表1不能变成表2。例12 如图(1)(6)所示的六种图形拼成右下图,如果图(1)必须放在右下图的中间一列,应如何拼?把右上图黑、白相间染色(见上图)。其中有11个白格和10个黑格,当图形拼成后,图形(2)(4)(5)(6)一定是黑、白各2格,而图形(3)必须有3格是同一种颜色,另一种颜色1格。因为前四种图形,黑、白已各占24=8(格),而黑格总共只有10格,所以图形(3)只能是3白1黑。由此知道图(1)一定在中间一列的黑格,而上面的黑格不可能,所以图(1)在中间一列下面的黑格中。那么其它图形如何拼呢?为了说

12、明方便,给每一格编一个数码(见左下图)。因为图(3)是3白1黑,所以为使角上不空出一格,它只能放在(1,3,4,5)或(7,12,13,17)或(11,15,16,21)这三个位置上。若放在(1,3,4,5)位置上,则图(6)只能放在(7,12,13,18)或(15,16,19,20)或(2,7,8,13)这三个位置,但是前两个位置是明显不行的,否则角上会空出一格。若放在(2,7,8,13)上,则图(2)只能放在(12,17,18,19)位置上,此时不能同时放下图(4)和图(5)。若把图(3)放在(7,12,13,17)位置上,则方格1这一格只能由图(2)或图(6)来占据。如果图(2)放在(1

13、,2,3,4),那么图(6)无论放在何处都要出现孤立空格;如果把图(6)放在(1,4,5,10),那么2,3这两格放哪一图形都不合适。因此,图形(3)只能放在(11,15,16,21)。其余图的拼法如右上图。练习121.中国象棋盘的任意位置有一只马,它跳了若干步正好回到原来的位置。马所跳的步数是奇数还是偶数?2.右图是某展览大厅的平面图,每相邻两展览室之间都有门相通。今有人想从进口进去,从出口出来,每间展览厅都要走到,既不能重复也不能遗漏,应如何走法?3.能否用下图中各种形状的纸片(不能剪开)拼成一个边长为99的正方形(图中每个小方格的边长为1)?4.用15个14的长方形和1个22的正方形,能

14、否覆盖85.平面上不共线的五点,每两点连一条线段,并将每条线段染成红色或蓝色。如果在这个图形中没有出现三边同色的三角形,那么这个图形一定可以找到一红一蓝两个“圈”(即封闭回路),每个圈恰好由五条线段组成。6.将正方形ABCD分割成n2个相等的小正方格,把相对的顶点A,C染成红色,B,D染成蓝色,其他交点任意染成红、蓝两种颜色之一。试说明:恰有三个顶点同色的小方格的数目是偶数。7.已知ABC内有n个点,连同A,B,C三点一共(n3)个点。以这些点为顶点将ABC分成若干个互不重叠的小三角形。将A,B,C三点分别染成红色、蓝色和黄色。而三角形内的n个点,每个点任意染成红色、蓝色和黄色三色之一。三个顶

15、点颜色都不同的三角形的个数是奇数还是偶数?8.从10个英文字母A,B,C,D,E,F,G,X,Y,Z中任意选5个字母(字母允许重复)组成一个“词”,将所有可能的“词”按“字典顺序”(即英汉辞典中英语词汇排列的顺序)排列,得到一个“词表”:AAAAA,AAAAB,AAAAZ,AAABA,AAABB,ZZZZY,ZZZZZ。设位于“词”CYZGB与“词”XEFDA之间(这两个词除外)的“词”的个数是k,试写出“词表”中的第k个“词”。1.偶数。把棋盘上各点按黑白色间隔进行染色(图略)。马如从黑点出发,一步只能跳到白点,下一步再从白点跳到黑点,因此,从原始位置起相继经过:白、黑、白、黑要想回到黑点,

16、必须黑、白成对,即经过偶数步,回到原来的位置。2.不能。用白、黑相间的方法对方格进行染色(如图)。若满足题设要求的走法存在,必定从白色的展室走到黑色的展室,再从黑色的展室走到白色的展室,如此循环往复。现共有36间展室,从白色展室开始,最后应该是黑色展室。但右图中出口处的展室是白色的,矛盾。由此可以判定符合要求的走法不存在。3.不能。我们将 9999的正方形中每个单位正方形方格染上黑色或白色,使每两个相邻的方格颜色不同,由于 9999为奇数,两种颜色的方格数相差为1。而每一种纸片中,两种颜色的方格数相差数为0或3,如果它们能拼成一个大正方形,那么其中两种颜色之差必为3的倍数。矛盾!4.不能。如图

17、,给88的方格棋盘涂上4种不同的颜色(用数字1,2,3,4表示)。显然标有1,2,3,4的小方格各有16个。每个14的长方形恰好盖住标有1,2,3,4的小方格各一个,但一个22的正方形只能盖住有三种数字的方格,故无法将每个方格盖住,即不可能有题目要求的覆盖。5.证:设五点为A,B,C,D,E。考虑从A点引出的四条线段:如果其中有三条是同色的,如AB,AC,AD同为红色,那么BCD的三边中,若有一条是红色,则有一个三边同为红色的三角形;若三边都不是红色,则存在一个三边同为蓝色的三角形。这与已知条件是矛盾的。所以,从A点出发的四条线段,有两条是红色的,也有两条是蓝色的。当然,从其余四点引出的四条线

18、段也恰有两条红色、两条蓝色,整个图中恰有五条红色线段和五条蓝色线段。下面只看红色线段,设从A点出发的两条是AB,AE。再考虑从B点出发的另一条红色线段,它不应是BE,否则就有一个三边同为红色的三角形。不妨设其为BD。再考虑从D点出发的另一条红色线段,它不应是DE,否则从C引出的两条红色线段就要与另一条红色线段围成一个红色三角形,故它是DC。最后一条红色线段显然是CE。这样就得到了一个红色的“圈”:ABDCEA。同理,五条蓝线也构成一个“圈”。6.证:将红点赋值为0,蓝点赋值为1。再将小方格四顶点上的数的和称为这个小方格的值。若恰有三顶点同色,则该小方格的值为奇数,否则为偶数。在计算所有n2个小

19、方格之值的和时,除A,B,C,D只计算一次外,其余各点都被计算了两次或四次。因为A,B,C,D四个点上的数之和是偶数,所以n2个小方格之值的和是偶数,从而这n2个值中有偶数个奇数。7.奇数。先对所有的小三角形的边赋值:边的两端点同色,该线段赋值为0,边的两端点不同色,该线段赋值为1。然后计算每个小三角形的三边赋值之和,有如下三种情况:(1)三个顶点都不同色的三角形,赋值和为3;(2)三个顶点中恰有两个顶点同色的三角形,赋值和为2;(3)三个顶点同色的三角形,赋值和为0。设所有三角形的边赋值总和为S,又设(1)(2)(3)三类小三角形的个数分别为a,b,c,于是有S=3a+2b+0c=3a+2b

20、。(*)注意到在所有三角形的边赋值总和中,除了AB,BC,CA三条边外,都被计算了两次,故它们的赋值和是这些边赋值和的2倍,再加上ABC的三边赋值和3,从而S是一个奇数,由(*)式知a是一个奇数,即三个顶点颜色都不同的三角形的个数是一个奇数。8.EFFGY。将A,B,C,D,E,F,G,X,Y,Z分别赋值为0,1,2,3,4,5,6,7,8,9,则CYZGB=28961,_XEFDA=74530。在28961与74530之间共有74530-28961-1=45568(个)数,词表中第45568个词是EFFGY。第13讲 抽屉原理把5个苹果放到4个抽屉中,必然有一个抽屉中至少有2个苹果,这是抽屉

21、原理的通俗解释。一般地,我们将它表述为:第一抽屉原理:把(mn1)个物体放入n个抽屉,其中必有一个抽屉中至少有(m1)个物体。使用抽屉原理解题,关键是构造抽屉。一般说来,数的奇偶性、剩余类、数的分组、染色、线段与平面图形的划分等,都可作为构造抽屉的依据。例1 从1,2,3,100这100个数中任意挑出51个数来,证明在这51个数中,一定:(1)有2个数互质;(2)有2个数的差为50;(3)有8个数,它们的最大公约数大于1。(1)将100个数分成50组:1,2,3,4,99,100。在选出的51个数中,必有2个数属于同一组,这一组中的2个数是两个相邻的整数,它们一定是互质的。(2)将100个数分

22、成50组:1,51,2,52,50,100。在选出的51个数中,必有2个数属于同一组,这一组的2个数的差为50。(3)将100个数分成5组(一个数可以在不同的组内):第一组:2的倍数,即2,4,100;第二组:3的倍数,即3,6,99;第三组:5的倍数,即5,10,100;第四组:7的倍数,即7,14,98;第五组:1和大于7的质数即1,11,13,97。第五组中有22个数,故选出的51个数至少有29个数在第一组到第四组中,根据抽屉原理,总有8个数在第一组到第四组的某一组中,这8个数的最大公约数大于1。例2 求证:可以找到一个各位数字都是4的自然数,它是1996的倍数。因19964499,故只

23、需证明可以找到一个各位数字都是1的自然数,它是499的倍数就可以了。得到500个余数r1,r2,r500。由于余数只能取0,1,2,499这499个值,所以根据抽屉原理,必有2个余数是相同的,这2个数的差就是499的倍数,这个差的前若干位是1,后若干位是0:111000,又499和10是互质的,故它的前若干位由1组成的自然数是499的倍数,将它乘以4,就得到一个各位数字都是4的自然数,它是1996的倍数。例3 在一个礼堂中有99名学生,如果他们中的每个人都与其中的66人相识,那么可能出现这种情况:他们中的任何4人中都一定有2人不相识(假定相识是互相的)。分析:注意到题中的说法“可能出现”,说明

24、题的结论并非是条件的必然结果,而仅仅是一种可能性,因此只需要设法构造出一种情况使之出现题目中所说的结论即可。将礼堂中的99人记为a1,a2,a99,将99人分为3组:(a1,a2,a33),(a34,a35,a66),(a67,a68,a99),将3组学生作为3个抽屉,分别记为A,B,C,并约定A中的学生所认识的66人只在B,C中,同时,B,C中的学生所认识的66人也只在A,C和A,B中。如果出现这种局面,那么题目中所说情况就可能出现。因为礼堂中任意4人可看做4个苹果,放入A,B,C三个抽屉中,必有2人在同一抽屉,即必有2人来自同一组,那么他们认识的人只在另2组中,因此他们两人不相识。例4 如

25、右图,分别标有数字1,2,8的滚珠两组,放在内外两个圆环上,开始时相对的滚珠所标数字都不相同。当两个圆环按不同方向转动时,必有某一时刻,内外两环中至少有两对数字相同的滚珠相对。此题中没有直接提供我们用以构造抽屉和苹果的数量关系,需要转换一下看问题的角度。内外两环对转可看成一环静止,只有一个环转动。一个环转动一周后,每个滚珠都会有一次与标有相同数字的滚珠相对的局面出现,那么这种局面共要出现8次。将这8次局面看做苹果,再需构造出少于8个抽屉。注意到一环每转动45角就有一次滚珠相对的局面出现,转动一周共有8次滚珠相对的局面,而最初的8对滚珠所标数字都不相同,所以数字相同的滚珠相对的情况只出现在以后的

26、7次转动中,将7次转动看做7个抽屉,8次相同数字滚珠相对的局面看做8个苹果,则至少有2次数字相对的局面出现在同一次转动中,即必有某一时刻,内外两环中至少有两对数字相同的滚珠相对。例5 有一个生产天平上用的铁盘的车间,由于工艺上的原因,只能控制盘的重量在指定的20克到20.1克之间。现在需要重量相差不超过0.005克的两只铁盘来装配一架天平,问:最少要生产多少个盘子,才能保证一定能从中挑出符合要求的两只盘子?把2020.1克之间的盘子依重量分成20组:第1组:从20.000克到20.005克;第2组:从20.005克到20.010克;第20组:从20.095克到20.100克。这样,只要有21个

27、盘子,就一定可以从中找到两个盘子属于同一组,这2个盘子就符合要求。例6 在圆周上放着100个筹码,其中有41个红的和59个蓝的。那么总可以找到两个红筹码,在它们之间刚好放有19个筹码,为什么?此题需要研究“红筹码”的放置情况,因而涉及到“苹果”的具体放置方法,由此我们可以在构造抽屉时,使每个抽屉中的相邻“苹果”之间有19个筹码。依顺时针方向将筹码依次编上号码:1,2,100。然后依照以下规律将100个筹码分为20组:(1,21,41,61,81);(2,22,42,62,82);(20,40,60,80,100)。将41个红筹码看做苹果,放入以上20个抽屉中,因为41=2201,所以至少有一个抽屉中有2+1=3(个)苹果,也就是说必有一组5个筹码中有3个红色筹码,而每组的5个筹码在圆周

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1