ImageVerifierCode 换一换
格式:DOCX , 页数:13 ,大小:1.21MB ,
资源ID:1748926      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/1748926.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(无轴承开关磁阻全周期发电机的加宽导通控制策略及其优化.docx)为本站会员(b****1)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

无轴承开关磁阻全周期发电机的加宽导通控制策略及其优化.docx

1、无轴承开关磁阻全周期发电机的加宽导通控制策略及其优化无轴承开关磁阻全周期发电机的加宽导通控制策略及其优化 摘要:采用加宽导通控制策略的无轴承开关磁阻全周期发电机的输出建压随开通关断角的变化而变化,且变化规律比较复杂,因此研究该控制策略下的角度优化方法是必需的。本文阐述了全周期发电和加宽导通控制策略的基本原理,在不加悬浮力的情况下,运用相电流解析的方法从理论上研究该控制策略下的角度优化,提出一种固定开通角优化关断角的方法,并分析了加悬浮力对上述理论的影响。该方法以理论为基础,结合少量仿真便可解算出最优关断角。仿真结果验证了本文的理论分析。关键词:无轴承开关磁阻电机;全周期发电机;控制策略;加宽导

2、通;角度优化The Wide-excitation Control Strategy and Its Optimization of Full-period Bearingless Switched Reluctance Generators Abstract: The output voltage of the full-period bearingless switched reluctance generator under the wide-excitation control strategy varies with the variation of the turn-on angl

3、e and the turn-off angle. Therefore, this paper focuses on the research of the firing angle optimization. Firstly, the principle of the full-period generator and the wide-excitation control strategy is demonstrated. Then, the optimization of the turn-on angle and the turn-off angle is analyzed by me

4、ans of the analytic calculation of the phase current without the levitation force. A method to optimize the turn-off angle under fixed turn-on angle is proposed. Finally, the influence of the levitation force to the theory is researched. Combining with a few simulations, the proposed approach based

5、on the analysis can obtain the best turn-off angle. The simulation results verify the theory in the paper. Key words: Bearingless switched reluctance motor;full-period generator;control strategy;wide-excitation;angle optimization0 前言起源于上世纪八十年代末的无轴承电机根据磁轴承结构和电机定子结构之间的相似性,把磁轴承中的悬浮绕组和电机绕组同时叠绕在电机定子上,使两者

6、磁场合成一体,通过电力电子技术和微机控制技术,同时控制电机转子的旋转和悬浮1-7。与传统的磁轴承电机相比,无轴承电机具有电机结构紧凑、轴向利用率高、转轴刚度高、电能消耗少等优点8。开关磁阻电机以结构简单、坚固、成本低、工作可靠、控制灵活、运行效率高、容错能力强等优越特性,在牵引运输、通用工业、航空工业、家用电器等各个领域都获得了应用9-11。开关磁阻电机作为发电机使用时采用周期性分时发电模式,即在电感上升段励磁,在电感下降段续流发电,其功率密度与永磁电机相比有局限性。众多学者先后提出若干方法改善电机性能,但是均没能将提高功率密度和发挥开关磁阻电机的高速适应性结合起来12-15。本文研究一种新型

7、的无轴承开关磁阻电机发电技术,将应用于高速驱动领域的无轴承技术和开关磁阻电机的发电技术相结合,研究无轴承开关磁阻电机全周期发电功能。之所以称之为全周期发电,是因为主绕组在整个周期内均能对外输出电能,这与普通的分时发电不同。无轴承开关磁阻全周期发电机的研究刚刚起步,尚处于探索阶段,国际国内只有本实验室在进行相关的研究,已经推导了全周期发电的数学模型,在此基础上进行了仿真,制作了一套功率变换器和控制系统,并设计了一台12/8结构实验样机。目前研究中采用的控制策略是轮流导通控制,其优点是控制简单,缺点是励磁强度受到限制,且相交接处悬浮力不足。因此本文研究一种加宽导通的控制策略,在阐述其基本原理的基础

8、上,运用相电流解析的方法,从理论上研究不加悬浮力时该控制策略的角度优化,提出一种固定开通角优化关断角的方法,并分析加悬浮力对上述理论的影响,最后用仿真结果验证了上述理论的正确性。1 基本原理1.1 全周期发电机理无轴承开关磁阻全周期发电机的悬浮原理如图1所示,悬浮绕组Nsa1+和Nsa1-分别通以大小不同的电流进行单独控制,当悬浮绕组Nsa1+通以较大电流,悬浮绕组Nsa1-通以较小电流时,磁通分布如图中所示,可以看出,气隙1处的磁通密度大于气隙2处的磁通密度,此时转子将受到向右的偏心磁拉力而向右运动。相同情况下,若把悬浮绕组Nsa1+和Nsa1-中所加电流大小互换,转子将受到向左的偏心磁拉力

9、而向左运动。同理方向的力可以通过控制方向上的两个悬浮绕组中的电流大小不同得以产生,由此通过合理控制每相四个悬浮绕组中的电流,即可产生所需方向和方向上的悬浮力。由于任意方向的悬浮力都可以由方向和方向的悬浮力合成来产生,所以通过实时控制各相四个悬浮绕组的电流即可实现电机转子的悬浮。图1 无轴承开关磁阻全周期发电机的悬浮原理图图2 无轴承开关磁阻全周期发电机的结构示意图结合图2阐述无轴承开关磁阻全周期发电机的发电原理。每个定子齿极上的悬浮绕组接H桥,每相四个定子齿极上的主绕组串联接整流桥。通过H桥控制悬浮绕组的电流,使悬浮绕组在控制电机悬浮的同时承担励磁作用。在电机转动过程中,主绕组匝链的磁链发生变

10、化,根据电磁感应定律,在主绕组中会有感应电势产生,当主绕组形成回路就有感应电流产生,感应电势的方向总是企图产生感应电流来阻止线圈中磁链的变化。在悬浮绕组关断电流后,主绕组继续续流发电,与普通开关磁阻电机分时发电的续流发电阶段类似。无轴承开关磁阻全周期发电机的典型电流波形如图3所示,在悬浮绕组励磁阶段,主绕组中有感应电流产生,经过整流对外输出电能;悬浮绕组结束励磁后,主绕组中仍有续流电流,即在整个周期内主绕组均对外输出电能。图3 无轴承开关磁阻全周期发电机的典型电流波形1.2 加宽导通控制策略的基本原理在加宽导通控制策略下,励磁强度与轮流导通时相比有所增加,且由于双相导通解决了相交接处的悬浮力不

11、足问题。12/8结构实验样机的转子角度定义如图4所示,定义转子极轴线与定子槽轴线对齐位置为0,则相电感最大值对应22.5。如无特别说明,文中的角度数均为此定义下的角度数。图4 12/8结构实验样机的转子角度定义如图5所示,加宽导通控制策略下,悬浮绕组每相的导通区间on,off大于15,将其划分为悬浮区间和加宽区间两部分。悬浮区间1,2即提供悬浮力的15区间,区间两端点1,2的选取原则如下:若on 15,则1 = on,2 = on + 15;若off 30,则1 = off 15,2 = off;否则,1 = 15,2 = 30。导通区间除去悬浮区间剩余的即加宽区间,该区间内导通电流对称,不产

12、生悬浮力,只加强励磁。图5 加宽导通控制策略的典型电流波形加宽导通控制策略下的全周期发电系统如图6所示,将位移误差信号进行PID调节获得给定悬浮力F*,F*,将发电电压误差信号进行PI调节获得给定悬浮电流is*,再结合实测主绕组电流im和位置信号参数,即可通过悬浮绕组电流控制器计算出一相四极悬浮绕组电流的给定值is1*、is2*、is3*、is4*。电流斩波控制让实际电流跟踪is1*、is2*、is3*、is4*,以产生适当的悬浮力,实现电机悬浮的同时实现对发电电压的实时控制。图6 加宽导通控制策略的系统框图图7为悬浮绕组电流控制的具体流程图。在悬浮区间内,通过以下两式可以求出is1*和is2

13、*: (1) (2)其中Kf()是悬浮力系数,Nm是主绕组匝数,Nb是悬浮绕组匝数。再结合关系式is1* = |is1* is3*|/2,is2* = |is2* is4*|/2和is* = (is1* + is3*)/2 = (is2* + is4*)/2即可计算出is1*、is2*、is3*、is4*。而在加宽区间内,is1* = is2* = is3* = is4* = is*。图7 悬浮绕组电流控制流程图2 加宽导通控制策略的优化2.1 相电流解析为了从理论上对加宽导通控制策略进行分析,首先引入无轴承开关磁阻全周期发电机在加宽导通控制策略下的相电流解析。假设不考虑磁路饱和,不计漏磁和边

14、缘散磁,电感近似为三角形分布,忽略开关管和二极管的压降,忽略绕组电阻的压降,悬浮绕组电流在斩波段近似平顶,转速为常数,开环建压已达到稳定,且不加悬浮力。在以上假设下,电感和悬浮绕组电流如图8所示。在一相中,设四极串联的主绕组自感最大值为Lmmax,最小值为Lmmin,上升率为Km,一极的悬浮绕组自感相应项依次为Lsmax、Lsmin、Ks,两者之间互感相应项依次为Mmax、Mmin、KM。悬浮绕组电流的斩波限为ic。将坐标原点设在电感初始上升点,则电感最大值对应的角度为m,悬浮绕组电流上升达到斩波限的角度为n,下降达到零的角度为f,主绕组电流下降达到零的角度为e。图8 线性电感和近似悬浮绕组电

15、流示意图在此基础上,无轴承开关磁阻全周期发电机的基本电压方程组为: (3) (4)其中us为悬浮绕组励磁电压,悬浮绕组开通为+us,关断为us;uo为输出建压,主绕组电流为负时是+uo,为正时是uo;Km、Ks、KM在电感上升段为+Km、+Ks、+KM,下降段为Km、Ks、KM;为电机角速度;im、is分别为主绕组和悬浮绕组的电流;Lm、Ls、M分别为主绕组自感、悬浮绕组自感和两者之间的互感;图8中的n到off段和f到e段只用方程(4)。根据以上分析,将图8所示的on到e划分成6段求解基本电压方程组得到主绕组电流:(1) on到n: (5)(2) n到m: (6)(3) m到off(假设off足够大使im在该段经过零): (7) (8)(4) off到f: (9)(5) f到2m: (10)(6) 2m到e: (11)其中n和f可以通过is的分段表达式算出,n = C3(on + C1/C2)/(C2ic C3) C1/C2,f = C2/C3(off C11/C2)/(ic C3/C2) + C11/C2,e可以通过式(11)算出;C1到C9,C11和C12是与、ic、us、uo、on、off和电感参数相关的量,具体表达式见附录;K1到K7是根据每段电流的初值计算得

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1