ImageVerifierCode 换一换
格式:DOCX , 页数:25 ,大小:666.14KB ,
资源ID:1735882      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/1735882.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(陕西省超级全能生学年高三教学质量检测三数学理试题.docx)为本站会员(b****2)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

陕西省超级全能生学年高三教学质量检测三数学理试题.docx

1、陕西省超级全能生学年高三教学质量检测三数学理试题陕西省“超级全能生”2020-2021学年高三教学质量检测(三)数学(理)试题学校:_姓名:_班级:_考号:_一、单选题1若集合,则的子集的个数为( )A1 B2 C3 D42若,则( )A B C D3某空间几何体的三视图如图所示,则该几何体的表面积为( )A BC D4已知直线l1:2xy2=0与直线l2:3x+y8=0的交点为P,则点P到直线l:y=2x的距离为()A BC D5下列关于函数的说法中,正确的是( )A有最大值,在内为增函数B有最大值,在内为减函数C有最小值,在内为增函数D有最小值,在内为减函数6已知等比数列的前项和,则实数的

2、值为( )A B C4 D57执行如图所示的程序框图,若输入的,则输出的( )A B2 C D18已知在的展开式中,各项系数之和与二项式系数之和的等差中项是528,则展开式中二项式系数最大的项为( )A与 B与C与 D与9在中,则的最小值为( )A B C D10若实数满足不等式组,则的最大值为( )A36 B18 C24 D1211已知在等差数列中,数列的通项,是数列的前项和,若,则与的大小关系是( )A B C D12已知函数在处的切线的斜率为,若该函数存在两个不同的零点,则取值范围是( )A B C D二、填空题13若,则_.14某新能源汽车生产工厂一个月生产三种型号的新能源汽车共300

3、0辆,采用分层抽样检测,并绘制如下统计表:汽车型号生产数量1300检测数量130表格中的两种型号的汽车数据污损,只知道抽取的型号汽车比型号汽车多10辆,则型号汽车的生产数量为_.15的内角的对边分别为,若,则的面积的最大值为_.16若是双曲线(,)上的任意两点,且满足,为坐标原点,点是该双曲线上异于点的任意一点,且直线的斜率之积为,则双曲线的渐近线方程为_.三、解答题17将函数的图象向右平移个单位长度后可得到函数的图象.(1)求函数的解析式及最小正周期;(2)若,求的最大值及取得最大值时的值.18在创国家级卫生县城的评估标准中,有一项是市民对该项政策的知晓率,专家在对某县进行评估时,从该县的乡

4、镇中随机抽取市民进行调查.知晓率达90%以上记为合格,否则记为不合格.已知该县的10个乡镇中,有7个乡镇市民的知晓率可达90%以上,其余的均在90%以下.(1)现从这10个乡镇中随机抽取3个进行调查,求抽到的乡镇中恰有2个乡镇不合格的概率;(2)若记从该县随机抽取的3个乡镇中不合格的乡镇的个数为,求的分布列和数学期望.19如图,在直角梯形中,是上一点,现沿将折起到的位置,并使平面,点在边上,且满足.(1)证明:平面;(2)若,求二面角的大小.20设离心率为3,实轴长为1的双曲线()的左焦点为,顶点在原点的抛物线的准线经过点,且抛物线的焦点在轴上.(1)求抛物线的方程;(2)若直线与抛物线交于不

5、同的两点,且满足,求的最小值.21已知函数.(1)求的极大值;(2)当时,且使得,求证:.22在平面直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,并在两坐标系中取相同的长度单位.已知圆的方程为,直线的参数方程为(为参数,为直线的倾斜角).(1)写出圆的极坐标方程和直线的普通方程;(2)若为圆上任意一点,求点到直线的距离的取值范围.23已知函数.()解不等式;()若直线与函数有两个交点,求实数的取值范围.参考答案1D【分析】先解不等式,得集合,由,可得集合,从而可求出,所以其子集的个数为【详解】因为,所以,其子集的个数为,故选:D.【点睛】本题考查一元二次不等式、指数不等式、集合的交

6、集运算及子集的个数,考查运算求解能力,考查数学运算核心素养,属于基础题.2C【分析】先对已知的式子化简,求出,可得的值【详解】由得,故,故选:C.【点睛】本题考查复数的运算和共轭复数的概念,考查运算求解能力,考查数学运算核心素养,属于基础题.3A【分析】由三视图可知此几何体是由一个半圆柱和一个直三棱柱组合而成,从而可求得其表面积【详解】该几何体是由一个半圆柱和一个直三棱柱组合而成,故其表面积,故选:A.【点睛】本题考查空间几何体的三视图、几何体的表面积,考查空间想象能力和运算求解能力,考查直观想象、数学运算核心素养,属于中档题.4C【分析】将两直线方程联立求出交点,再由点到直线的距离公式即可求

7、解.【详解】联立,得P(2,2),点P(2,2)到直线l:y=2x的距离故选:C【点睛】本题考查了解二元一次方程组、点到直线的距离公式,属于基础题.5A【分析】此题涉及到对数,先求定义域,由,可知此函数的定义域为,由于以为底的对数函数为减函数,所以有最大值,再换元,利用复合函数判断单调性的方法“同增异减”可求出其单调区间【详解】令,所以,故有最大值.又是由函数与复合而成,且在上单调递减,在上单调递增,在上单调递减,所以函数的单调递增区间为,单调递减区间为,故选:A.【点睛】本题考查复合函数的单调性及函数的最值,考查运算求解能力和逻辑推理能力,考查数学运算、逻辑推理核心素养,属于中档题.6D【分

8、析】由,给分别取1,2,3,可求出等比数的前三项,再由列方程求出的值【详解】由题知,是等比数列,易知,解得,故选:D.【点睛】本题考查等比数列的通项公式与前项和及等比中项公式的应用,考查逻辑推理能力与运算求解能力,考查数学运算、逻辑推理核心素养,属于基础题.7B【分析】根据循环语句,依次执行即可算出结果【详解】当时,;当时,;当时,;当时,此时不成立,输出.由函数可得,所以有.由题意得该程序框图是计算的值,因为,所以,故选:B.【点睛】本题考查程序框图、函数的对称性,考查推理论证能力和运算求解能力,考查逻辑推理、数学运算核心素养,属于基础题.8A【分析】根据题意,列出关于的方程,求出的值,再利

9、用展开式的通项公式求出其系数的最大项【详解】因为各项系数之和与二项式系数之和的等差中项是528,所以,即,解得,故展开式中第3项和第4项的二项式系数同时取得最大值,又,故选:A.【点睛】本题考查二项式系数的概念及二项式定理,考查运算求解能力,考查数学运算核心素养,属于中档题.9B【分析】由已知条件可知为等腰直角三角形,且,所以将用向量表示后是关于的二次函数,然后配方后可求得结果.【详解】由,得是等腰直角三角形,由,得,故,所以当时,取得最小值,故选:B.【一题多解】由,可知为等腰直角三角形,且,由得三点共线,因为的几何意义是的模与在方向上的投影的积,易知当取得最小值时,点在线段上,此时有,因为

10、,所以,故选:B.【点睛】本题考查平面向量数量积的最值问题、基本不等式或二次函数求最值的问题,考查逻辑推理能力、运算求解能力,考查数形结合的思想方法,考查逻辑推理、数学运算核心素养,属于中档题.10B【分析】先画出可行域,然后将目标函数的最大值转化为求目标函数的值域的绝对值的最大值【详解】作出可行域如图所示,其是以,为顶点的三角形区域及其内部.将所求目标函数的最大值转化为求目标函数的值域的绝对值的最大值,由图知当过点时,取得最小值,当过点时,取得最大值,故,则,故选:B.【一题多解】作出可行域如图所示,其是以,为顶点的三角形区域及其内部.因为目标函数表示平面区域内的点到直线距离的倍,由图可知点

11、到直线的距离最大,所以当,时,最大,即,故选:B.【点睛】本题考查线性规划问题,考查转化与化归、数形结合的思想方法,考查数学抽象、直观想象等核心素养,属于中档题.11B【分析】先由已知求出等差数列的通项公式,然后可得数列的通项公式,从而可求出数据列的前项和,再利用不等式放缩法可比较出与的大小【详解】设等差数列的公差为,由题意得,故,由不等式得,即,所以,即,故选:B.【点睛】本题考查等差数列的通项公式、对数运算、不等式放缩等知识,考查运算求解能力和逻辑推理能力以及特殊与一般的思想方法,考查数学运算、逻辑推理核心素养,属于较难题.12C【分析】先对函数求导,再将代入导函数中,其值等于,列方程可求

12、出的值,设出函数的两个零点,代入函数中,作差消去,然后利用平均值不等式可求得结果【详解】,得,.是函数的两个不同的零点,则,利用对数平均值不等式有,显然有,故选:C.【点睛】本题考查导数的几何意义、函数的零点及对数平均值不等式,考查逻辑推理能力和运算求解能力,考查逻辑推理、数学运算核心素养.本题直接利用不等式解得,虽然技巧性较强,但是在考场上能恰当利用一些结论解题可以起到事半功倍的效果,如果在解答题中应用结论需要给出适当的证明,证明如下:当,且时,中的证明,不妨假设,要证明成立,只需证明成立,即证明,即证明成立.令,则,构造函数.因为,所以在上单调递减,所以当时,则有成立.13【分析】由于,所

13、以先由已知求出的值,然后代入上式中可得结果【详解】由可知,又,故答案为:.【点睛】本题考查诱导公式、二倍角公式、同角三角函数的基本关系,考查逻辑推理能力和运算求解能力,考查逻辑推理和数学运算核心素养,属于基础题.14900【分析】由于分层抽样是按比较抽取的,所以由题意列比例式求解【详解】设生产型号汽车辆,则生产型号汽车辆,设抽取型号汽车辆,则抽取型号汽车辆,根据分层抽样原理可得,解得,则型号汽车生产了800辆,型号汽车生产了900辆.故答案为:900【点睛】本题考查分层抽样,考查数据处理能力和运算求解能力,考查数据分析、数学运算核心素养,属于基础题.15【分析】先由已知求出角,再利用余弦定理得

14、到关于的方程,再用均值不等式可求出的最大值,从而可求出面积的最大值【详解】因为,又,所以,则,由余弦定理及,得,所以,当且仅当时等号成立,所以.故答案为:【点睛】本题考查余弦定理、三角形的面积公式、基本不等式,考查运算求解能力,数形结合的思想方法,考查数学运算、直观想象核心素养.16【分析】由可知为的中点,即关于原对称,若设,则,再设出点的坐标,然后将直线的斜率用这些坐标表示出来,其积等于,又因为点在双曲线上,所以将这两个点的坐标代入双曲线方程中,利用点差法作差,得到一个式子,再结合前面的式子可得的比值,从而得到双曲线的渐近线方程.【详解】由得两点关于原点对称,设,则,由,得,又,两式相减得,即,故,所以双曲线的渐近线方程为.一题多解:由得两点关于原点对称,设,则,由,得,即,由,得,即,即,故,所以双曲线的渐近线方程为.故答案为:【点睛】本题考查双曲线的几何性质、渐近线方程,考查运算求解能力,考查数学运算核心素养,属于中档题.17(1)

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1