ImageVerifierCode 换一换
格式:DOCX , 页数:18 ,大小:60.52KB ,
资源ID:17247659      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/17247659.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(r语言股票下载 ar模型 描述统计 附代码数据Word下载.docx)为本站会员(b****6)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

r语言股票下载 ar模型 描述统计 附代码数据Word下载.docx

1、#Microsoft symbol in Google finance is MSFT# d. Download Microsoft stock price data from Jan 3, 2010 to Jan 20, 2016 in R using getSymbols command in# Quantmod, check if data is read properly using head and tail command 5getSymbols(MSFT, from = 2010-01-03, to = 2016-01-20) # As of 0.4-0, getSymbols

2、uses env=parent.frame() and# auto.assign=TRUE by default.# This behavior will be phased out in 0.5-0 when the call will# default to use auto.assign=FALSE. getOption(getSymbols.env) and # getOptions(getSymbols.auto.assign) are now checked for alternate defaults# This message is shown once per session

3、 and may be disabled by setting # options(getSymbols.warning4.0=FALSE). See ?getSymbols for more details.# 1 MSFThead(MSFT)# MSFT.Open MSFT.High MSFT.Low MSFT.Close MSFT.Volume# 2010-01-04 30.62 31.10 30.59 30.95 38409100# 2010-01-05 30.85 31.10 30.64 30.96 49749600# 2010-01-06 30.88 31.08 30.52 30.

4、77 58182400# 2010-01-07 30.63 30.70 30.19 30.45 50559700# 2010-01-08 30.28 30.88 30.24 30.66 51197400# 2010-01-11 30.71 30.76 30.12 30.27 68754700# MSFT.Adjusted# 2010-01-04 25.71042# 2010-01-05 25.71872# 2010-01-06 25.56089# 2010-01-07 25.29506# 2010-01-08 25.46951# 2010-01-11 25.14553tail(MSFT)# M

5、SFT.Open MSFT.High MSFT.Low MSFT.Close MSFT.Volume# 2016-01-12 52.76 53.10 52.06 52.78 36095500# 2016-01-13 53.80 54.07 51.30 51.64 66883600# 2016-01-14 52.00 53.42 51.57 53.11 52381900# 2016-01-15 51.31 51.97 50.34 50.99 70739100# 2016-01-19 51.48 51.68 50.06 50.56 43564500# 2016-01-20 49.98 51.38

6、49.10 50.79 63273000# 2016-01-12 51.37038# 2016-01-13 50.26083# 2016-01-14 51.69157# 2016-01-15 49.62819# 2016-01-19 49.20968# 2016-01-20 49.43353# e. Plot graph for stock price 5plot(MSFT)# Warning in plot.xts(MSFT): only the univariate series will be plotted# f. Calculate log returns for Adjusted

7、Series and Plot simple time series graph for returns 5 n - length(MSFT,4);lrest - log(as.numeric(MSFT,4)-1/as.numeric(MSFT,4)-n)# g. Plot returns distribution graph 5hist(lrest,breaks = 50,col = green,freq = F)lines(density(lrest),col=red)# h. What did you learn about the data in step (g) 5#直方图来看,数据

8、为左偏分布# i. Calculate Basic Statistics for Return Series and report 5summary(lrest)# Min. 1st Qu. Median Mean 3rd Qu. Max. # -0.1210000 -0.0076650 0.0000000 0.0003257 0.0081750 0.0994100# j. Look at the basic stats and comment on the values for skewness and kurtosis 5#library(fBasics) timeDate timeSer

9、iestimeSeries# The following object is masked _by_ .GlobalEnv# MSFT# The following object is masked from # time-# Rmetrics Package fBasics# Analysing Markets and calculating Basic Statistics# Copyright (C) 2005-2014 Rmetrics Association Zurich# Educational Software for Financial Engineering and Comp

10、utational Science# Rmetrics is free software and comes with ABSOLUTELY NO WARRANTY.# https:/www.rmetrics.org - Mail to: informetrics.orgfBasicsTTR# volatilitydatadesc = function(X) result = list(0);#result list to return mean = mean(X);#mean var = var(X)#variance, pearsonskew = 3*(mean(X)-median(X)/

11、sd(X)#Pearson coefficient of skewness kurt = kurtosis(X) #kurtosis, quantile1 = quantile(X,probs = 0.25) # first quartile, med = median(X)# median, quantile3 = quantile(X,probs = 0.25)# third quartile, max = max(X)# minimum and min = min(X)# maximum. result = list( mean = mean, variance = var, skewn

12、ess = pearsonskew, kurtosis = kurt, first quartile = quantile1, median = med,third quartile = quantile3,maximum = max, minimum = min ) return(result)datadesc(lrest)# $mean# 1 0.0003256584# $variance# 1 0.0002164387# $skewness# 1 0.06640734# $kurtosis# 1 7.519028# attr(,methodexcess# $first quartile#

13、 25% # -0.007664925 # $median# 1 0# $third quartile# $maximum# 1 0.09941299# $minimum# 1 -0.1210332#从峰度和偏度的值来看,由于偏度大于零,因此数据成右偏分布。峰度大于0,说明它是比正态分布要陡峭# k. Setup Hypothesis for testing mean, skewness and kurtosis 5#H0: If values of mean, skewness and kurtosis is close to zero, then data set is normally

14、distributed.# l. Test the Hypothesis using tests learned in class (i-individual tests; and ii-combined test JB;# report your test results with p-values and whether you reject or accept H0) 5#i-individual tests;# Shapiro-Wilkshapiro.test(lrest)# Shapiro-Wilk normality test# data: lrest# W = 0.93798,

15、p-value 2.2e-16#ii-combined test JBtseries:jarque.bera.test(lrest)# Jarque Bera Test# X-squared = 3599.1, df = 2, p-value #从结果来看,由于p小于0.05,因此可以拒绝原假设H0 # m. Comment about data properties based on these tests: #从正态分布的Shapiro-Wilk检验和jarque-Bera正态性检验的结果来看,有p小于0.05,因此可以拒绝对数收益率符合正态分布的假设,可以认为收益率,不是正态分布# i.

16、 The difference between step (g) vs step (j) 5#从密度直方图的结果只能从直觉上判断数据是否符合正态分布,而通过峰度和偏度来判断,更加精确,可以从数字的角度来判断数据是否呈现偏正态分布。# ii. why joint tests is better than individual# A joint hypothesis tests more than one condition simultaneously# 7. Download the sp500data using Symbol GSPC from Jan 3, 2011 to Jan 20,

17、 2016 (50 pts)# a. Carry out initial steps, such as calculate log returns, draw time plot, distribution graph,# calculate returns, basic stat and employ related tests 25GSPC2011-01-03GSPChead(GSPC)# GSPC.Open GSPC.High GSPC.Low GSPC.Close GSPC.Volume# 2011-01-03 22.60 22.600 22.4708 22.4900 6600# 20

18、11-01-04 22.59 22.590 22.4500 22.4752 5100# 2011-01-05 22.61 22.760 22.6100 22.7100 15000# 2011-01-06 22.76 22.939 22.7100 22.7600 15900# 2011-01-07 22.93 22.930 22.7900 22.9200 7100# 2011-01-10 22.81 22.970 22.8000 22.9700 21500# GSPC.Adjusted# 2011-01-03 16.9375# 2011-01-04 16.9264# 2011-01-05 17.

19、1032# 2011-01-06 17.1409# 2011-01-07 17.2614# 2011-01-10 17.2990tail(GSPC)# 2016-01-12 21.40 21.41 21.3400 21.4000 6900# 2016-01-13 21.40 21.42 21.3000 21.4000 11900# 2016-01-14 21.44 21.44 21.2201 21.3500 11800# 2016-01-15 21.30 21.30 21.0500 21.2245 11100# 2016-01-19 21.38 21.40 21.0500 21.2659 81

20、00# 2016-01-20 21.25 21.27 21.0746 21.2700 23000# 2016-01-12 20.4356# 2016-01-13 20.4356# 2016-01-14 20.3878# 2016-01-15 20.2680# 2016-01-19 20.3075# 2016-01-20 20.3114plot(GSPC)# Warning in plot.xts(GSPC):- length(GSPC,4);- log(as.numeric(GSPC,4)-1/as.numeric(GSPC,4)-n)# 1 -4.395046e-05# 1 6.726461

21、e-05# 1 -0.0160765# 1 5.903059# -0.003570522 # 1 0.04301739# 1 -0.05164179# W = 0.92202, p-value # X-squared = 1866.5, df = 2, p-value # b. What did you learn about the data properties in step (a) 5# 从描述统计量的结果来看,数据为左偏分布,从假设检验的结果来,由于p小于0.05,因此拒绝原假设,可以认为数据不符合正态分布# c. Plot pacf, acf, also check the ord

22、er of the model using ar command in R# Which AR model is suggested 5acf(lrest)pacf(lrest)ar(lrest)# Call:# ar(x = lrest)# Coefficients:# 1 2 3 4 5 6 7 8 # -0.0060 0.0549 0.0132 0.0118 -0.0237 0.0496 0.0342 0.0983 # 9 10 # -0.0411 0.0416 # Order selected 10 sigma2 estimated as 6.625e-05# d. Estimate

23、both AR(1) and AR(2) model for returns to SP500 index# and comment on significance of parameters 5fit =ar(lrest, FALSE, 1) # fit ar(1)fit # ar(x = lrest, aic = FALSE, order.max = 1)# 1 # -0.0084 # Order selected 1 sigma2 estimated as 6.731e-05 (1-pnorm(abs(fit$ar)/sqrt(diag(fit$asy.var.coef)*2# 1 0.

24、7640941fit=ar(lrest, FALSE, 2) # fit ar(2)# ar(x = lrest, aic = FALSE, order.max = 2)# 1 2 # -0.0079 0.0649 # Order selected 2 sigma2 estimated as 6.708e-05(1-pnorm(abs(fit$ar)/sqrt(diag(fit$asy.var.coef)*2# 1 0.77862276 0.02073683#从结果来,ar2模型的系数显著性相对ar1更强 # e. Check and report if the residuals for models estimated in part (d) are white noise or not 5# ar(x = lrest, aic = FAL

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1